Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

機會無人機輔助數(shù)據(jù)收集的組網(wǎng)和資源分配方法

孫偉皓 王海 秦蓁 屈毓錛

孫偉皓, 王海, 秦蓁, 屈毓錛. 機會無人機輔助數(shù)據(jù)收集的組網(wǎng)和資源分配方法[J]. 電子與信息學報. doi: 10.11999/JEIT241053
引用本文: 孫偉皓, 王海, 秦蓁, 屈毓錛. 機會無人機輔助數(shù)據(jù)收集的組網(wǎng)和資源分配方法[J]. 電子與信息學報. doi: 10.11999/JEIT241053
SUN Weihao, WANG Hai, QIN Zhen, QU Yuben. Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241053
Citation: SUN Weihao, WANG Hai, QIN Zhen, QU Yuben. Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241053

機會無人機輔助數(shù)據(jù)收集的組網(wǎng)和資源分配方法

doi: 10.11999/JEIT241053
基金項目: 國家自然科學基金(62171465)
詳細信息
    作者簡介:

    孫偉皓:男,博士生,研究方向為網(wǎng)絡(luò)規(guī)劃

    王海:男,教授,研究方向為無線自組網(wǎng)和軟件定義網(wǎng)絡(luò)

    秦蓁:女,講師,研究方向為邊緣計算和組合優(yōu)化

    屈毓錛:男,副研究員,研究方向為邊緣計算和聯(lián)邦學習

    通訊作者:

    王?!?a href="mailto:hai_wang@aeu.edu.cn">hai_wang@aeu.edu.cn

  • 中圖分類號: TN915.03

Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection

Funds: The National Natural Science Foundation of China (62171465)
  • 摘要: 配備存儲部件的機會無人機打開了數(shù)據(jù)傳輸?shù)臋C會時間窗口,在低空數(shù)據(jù)收集系統(tǒng)中呈現(xiàn)巨大的潛力。為了提高數(shù)據(jù)收集效率,移動用戶可以主動組網(wǎng),將數(shù)據(jù)預(yù)先集聚到具備位置優(yōu)勢的簇頭節(jié)點,由簇頭節(jié)點負責上傳,實現(xiàn)時空維度的流量塑形。該文研究了機會無人機輔助數(shù)據(jù)收集的組網(wǎng)和資源分配方法。具體而言,如何根據(jù)機會無人機的既定航跡,通過聯(lián)合優(yōu)化用戶的子網(wǎng)數(shù)據(jù)傳輸策略、子網(wǎng)資源分配策略和子網(wǎng)形成策略,最大化全網(wǎng)數(shù)據(jù)上傳總量。上述問題高度耦合且具有海量的狀態(tài)空間,較難求解。該文通過推導(dǎo)閉式表達式求解子網(wǎng)數(shù)據(jù)傳輸和資源分配子問題,通過聯(lián)盟博弈求解子網(wǎng)形成子問題。最終提出了一種迭代優(yōu)化算法來獲得具有高效、可靠、自組織和低復(fù)雜度的解決方案。仿真結(jié)果表明所提方法能夠有效提升數(shù)據(jù)收集效率。同獨立上傳策略以及基于距離聚類和傳統(tǒng)聯(lián)盟博弈組網(wǎng)策略相比,所提方案的數(shù)據(jù)上傳總量分別提升了56.3%,51.6%和17.8%。
  • 圖  1  系統(tǒng)模型

    圖  2  組網(wǎng)策略示意圖

    圖  3  數(shù)據(jù)采集和上傳性能對比

    圖  4  可靠傳輸策略和傳輸距離的關(guān)系

    圖  5  不同算法的性能對比

    1  機會無人機輔助的組網(wǎng)和資源分配算法

     輸入:用戶的數(shù)據(jù)量Γi,用戶移動軌跡lti,無人機航跡ltm,基
     本參數(shù)Tg,Tu,dth,B0
     輸出:子網(wǎng)數(shù)據(jù)傳輸策略Q,子網(wǎng)資源分配策略B和子網(wǎng)形成
     策略Co
     (1) 初始化組網(wǎng)分組,每個節(jié)點自成一個聯(lián)盟
     (2) FOR t=1:Titer
     (3)  i=mod(t,U)+1
     (4)  用戶ui離開當前聯(lián)盟Con探索加入聯(lián)盟Con
     (5)  簇頭un0un0根據(jù)ˉQi,n(Pr、 \bar Q_{i,n'}^*({\Pr ^{{\text{req}}}}) 和式(26)更
        新子網(wǎng)資源分配策略
     (6)  用戶{u_i}根據(jù)式(20)更新數(shù)據(jù)傳輸策略
     (7)  If 聯(lián)盟切換滿足互利準則(33)do
     (8)   聯(lián)盟結(jié)構(gòu)變更, {{\mathrm{Co}}_n} = {{\mathrm{Co}}_n}\backslash \{ {u_i}\} ,{{\mathrm{Co}}_{n'}} = {{\mathrm{Co}}_{n'}} \cup \{ {u_i}\}
     (9)  End If
     (10) End For
    下載: 導(dǎo)出CSV
  • [1] 吳啟暉, 董超, 賈子曄, 等. 低空智聯(lián)網(wǎng)組網(wǎng)與控制理論方法[J]. 航空學報, 2024, 45(3): 28809. doi: 10.7527/S1000-6893.2023.28809.

    WU Qihui, DONG Chao, JIA Ziye, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28809. doi: 10.7527/S1000-6893.2023.28809.
    [2] LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic UAV utilization in wireless networks: Motivations, applications, and challenges[J]. IEEE Communications Magazine, 2020, 58(5): 62–68. doi: 10.1109/MCOM.001.1900687.
    [3] HARDES T and SOMMER C. Opportunistic airborne virtual network infrastructure for urban wireless networks[J]. Computer Communications, 2023, 208: 220–230. doi: 10.1016/j.comcom.2023.06.003.
    [4] ZHONG Xijian, GUO Yan, LI Ning, et al. Joint relay assignment and channel allocation for opportunistic UAVs-aided dynamic networks: A mood-driven approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15019–15034. doi: 10.1109/TVT.2020.3032125.
    [5] LIU Yitong, YAN Junjie, and ZHAO Xiaohui. Deep-reinforcement-learning-based optimal transmission policies for opportunistic UAV-aided wireless sensor network[J]. IEEE Internet of Things Journal, 2022, 9(15): 13823–13836. doi: 10.1109/JIOT.2022.3142269.
    [6] LI Bowen and CHEN Junting. Large timescale optimization for communications over aerial ad hoc networks with predetermined trajectories[J]. IEEE Transactions on Communications, 2024, 72(10): 6371–6385. doi: 10.1109/TCOMM.2024.3393980.
    [7] SUN Zhuo, WEI Zhiqiang, YANG Nan, et al. Two-tier communication for UAV-enabled massive IoT systems: Performance analysis and joint design of trajectory and resource allocation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1132–1146. doi: 10.1109/JSAC.2020.3018855.
    [8] KANG M and JEON S W. Energy-efficient data aggregation and collection for multi-UAV-enabled IoT networks[J]. IEEE Wireless Communications Letters, 2024, 13(4): 1004–1008. doi: 10.1109/LWC.2024.3355934.
    [9] CHAI Rong, GAO Yifan, SUN Ruijin, et al. Time-oriented joint clustering and UAV trajectory planning in UAV-assisted WSNs: Leveraging parallel transmission and variable velocity scheme[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12092–12106. doi: 10.1109/TITS.2023.3299842.
    [10] GHDIRI O, JAAFAR W, ALFATTANI S, et al. Offline and online UAV-enabled data collection in time-constrained IoT networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1918–1933. doi: 10.1109/TGCN.2021.3104801.
    [11] LIN Xin, LIU Aijun, NI Wanli, et al. Sum rate maximization of ad-hoc network in adversarial communication environments: A game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17905–17910. doi: 10.1109/TVT.2024.3416129.
    [12] QIN Zhen, WEI Zhenhua, QU Yuben, et al. AoI-aware scheduling for air-ground collaborative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 2989–3005. doi: 10.1109/TWC.2022.3215795.
    [13] ZHOU Jianshan, TIAN Daxin, WANG Yunpeng, et al. Reliability-optimal cooperative communication and computing in connected vehicle systems[J]. IEEE Transactions on Mobile Computing, 2020, 19(5): 1216–1232. doi: 10.1109/TMC.2019.2907491.
    [14] 韓晨, 劉愛軍, 安康, 等. 干擾環(huán)境下基于博弈論的無人機群部署與組網(wǎng)方法[J]. 電子與信息學報, 2022, 44(3): 860–870. doi: 10.11999/JEIT210992.

    HAN Chen, LIU Aijun, AN Kang, et al. Deployment and networking methods of UAV swarm in jamming environments based on game theory[J]. Journal of Electronics & Information Technology, 2022, 44(3): 860–870. doi: 10.11999/JEIT210992.
    [15] MOZAFFARI M, SAAD W, BENNIS M, et al. Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 8052–8066. doi: 10.1109/TWC.2017.2756644.
    [16] SANDHOLM T, LARSON K, ANDERSSON M, et al. Coalition structure generation with worst case guarantees[J]. Artificial Intelligence, 1999, 111(1/2): 209–238. doi: 10.1016/S0004-3702(99)00036-3.
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  103
  • HTML全文瀏覽量:  30
  • PDF下載量:  11
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-11-28
  • 修回日期:  2025-02-12
  • 網(wǎng)絡(luò)出版日期:  2025-02-21

目錄

    /

    返回文章
    返回