一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于改進(jìn)U型網(wǎng)絡(luò)的火焰光場圖像降噪及溫度場重建

單良 孫健 洪波 孔明

單良, 孫健, 洪波, 孔明. 基于改進(jìn)U型網(wǎng)絡(luò)的火焰光場圖像降噪及溫度場重建[J]. 電子與信息學(xué)報(bào). doi: 10.11999/JEIT240836
引用本文: 單良, 孫健, 洪波, 孔明. 基于改進(jìn)U型網(wǎng)絡(luò)的火焰光場圖像降噪及溫度場重建[J]. 電子與信息學(xué)報(bào). doi: 10.11999/JEIT240836
SHAN Liang, SUN Jian, HONG Bo, KONG Ming. Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240836
Citation: SHAN Liang, SUN Jian, HONG Bo, KONG Ming. Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240836

基于改進(jìn)U型網(wǎng)絡(luò)的火焰光場圖像降噪及溫度場重建

doi: 10.11999/JEIT240836
基金項(xiàng)目: 國家自然科學(xué)基金(51874264, 52076200),中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(2023ZY1008)
詳細(xì)信息
    作者簡介:

    單良:女,教授,碩士生導(dǎo)師,研究方向?yàn)樾盘柼幚?、光電檢測

    孫?。耗?,碩士生,研究方向?yàn)樾盘柼幚?/p>

    洪波:女,講師,碩士生導(dǎo)師,研究方向?yàn)樾盘柼幚?/p>

    孔明:男,教授,博士生導(dǎo)師,研究方向?yàn)楣怆姍z測

    通訊作者:

    孔明 mkong@cjlu.edu.cn

  • 中圖分類號: TN919.81; TP391

Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network

Funds: The National Natural Science Foundation of China (51874264, 52076200), The Central Guiding Local Science and Technology Development Fund Projects of China (2023ZY1008)
  • 摘要: 火焰光場圖像在形成過程中夾雜的輻射噪聲和成像噪聲會(huì)降低火焰溫度場3維重建精度,該文提出一種基于改進(jìn)U型網(wǎng)絡(luò)(UNet)的降噪模型,該模型針對輻射噪聲和成像噪聲的特性以及復(fù)雜火焰圖像的紋理信息設(shè)計(jì)了背景凈化模塊和邊緣信息優(yōu)化模塊。通過密集卷積操作對圖像背景層進(jìn)行特征提取,著重凈化夾雜在圖像背景層的輻射噪聲。通過UNet模塊中對稱的編碼器-解碼器網(wǎng)絡(luò)結(jié)構(gòu)和跳躍連接,對通道間的輻射噪聲和表層的成像噪聲降噪。最后利用邊緣優(yōu)化模塊對圖像細(xì)節(jié)信息進(jìn)行提取,從而獲得更高質(zhì)量的火焰光場圖像。數(shù)值模擬部分,在火焰光場圖像上混合加入信噪比為10 dB的輻射噪聲和成像噪聲,經(jīng)該文模型降噪后的峰值信噪比(PSNR)和結(jié)構(gòu)相似指數(shù)(SSIM)高達(dá)47 dB和0.9931,與其他降噪模型相比有明顯優(yōu)勢。隨后,將火焰光場圖像先經(jīng)該文降噪模型降噪,再進(jìn)行溫度場重建,測得重建平均相對誤差比未降噪時(shí)降低了約37%~57%,明顯提升了火焰溫度場3維重建的精度。實(shí)驗(yàn)部分,獲取真實(shí)蠟燭火焰和丁烷火焰光場圖像,經(jīng)該文降噪模型降噪后的蠟燭火焰圖像SSIM高達(dá)0.9870,降噪后的丁烷燃燒火焰圖像SSIM為0.9808。
  • 圖  1  BUE降噪模型整體結(jié)構(gòu)

    圖  2  火焰光場圖像示例

    圖  3  不同降噪算法處理后的火焰圖像

    圖  4  不同降噪算法處理后的火焰圖像降噪結(jié)果

    圖  5  BPM和EIEM模塊在降噪過程中的效果

    圖  6  測試集消融實(shí)驗(yàn)對比圖

    圖  7  含降噪預(yù)處理的火焰溫度場3維重建模型

    圖  8  重建溫度分布及誤差分布

    圖  9  火焰光場圖像采集

    圖  10  不同算法對蠟燭火焰和丁烷火焰的降噪結(jié)果對比

    表  1  合成數(shù)據(jù)集

    數(shù)據(jù)集類型 噪聲描述(dB) 數(shù)量
    無噪圖像 800
    單輻射噪聲圖像 輻射噪聲($ \eta_{\text{rad}} $=10, 15, 20) 800
    單成像噪聲圖像 成像噪聲 ($ \eta_{\text{img}} $=10, 15, 20) 800
    混合噪聲圖像 等量輻射噪聲和成像噪聲($ \eta_{\text{rad}} $=$ \eta_{\text{img}} $=10, 15, 20) 800
    下載: 導(dǎo)出CSV

    表  2  MobileNet和BUE-MobileNet 重建火焰溫度場的MRE和SSIM結(jié)果

    噪聲 $ \eta $(dB) MobileNet
    (MRE(%)/SSIM)
    BUE-MobileNet
    (MRE(%)/SSIM)
    輻射噪聲 15 0.35/0.9990 0.16/0.999 7
    成像噪聲 15 0.33/0.9990 0.14/0.999 8
    混合噪聲 15 0.45/0.9943 0.28/0.998 5
    下載: 導(dǎo)出CSV
  • [1] 張小雪, 王雨, 吳思遠(yuǎn), 等. 基于級聯(lián)稀疏查詢機(jī)制的輕量化火災(zāi)檢測算法[J]. 光電工程, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.

    ZHANG Xiaoxue, WANG Yu, WU Siyuan, et al. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electronic Engineering, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.
    [2] 王佳. 鈣鈦礦單探測器光譜測量方法及火焰溫度探測研究[D]. [博士論文], 中北大學(xué), 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.

    WANG Jia. Research on perovskite single detector spectrumeter for flame temperature detection[D]. [Ph. D. dissertation], North University of China, 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.
    [3] 鐘越, 蔡敏男, 徐文江, 等. 基于深度學(xué)習(xí)的湍流火焰三維羥基濃度場的時(shí)間超分辨率成像[J]. 航空動(dòng)力學(xué)報(bào), 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.

    ZHONG Yue, CAI Minnan, XU Wenjiang, et al. Temporal super-resolution imaging of 3D OH concentration field in turbulent flame based on deep learning[J]. Journal of Aerospace Power, 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.
    [4] 張杰. 基于光場成像的火焰三維溫度場測量方法研究[D]. [博士論文], 東南大學(xué), 2018.

    ZHANG Jie. Three-dimensional temperature measurement of flame based on light field imaging[D]. [Ph. D. dissertation], Southeast University, 2018. doi: 10.27014/d.cnki.gdnau.2021.004361.
    [5] 張杰. 基于深度學(xué)習(xí)和光場成像的火焰三維溫度場重建[D]. [碩士論文], 東南大學(xué), 2021.

    ZHANG Jie. Rapid reconstruction of 3D flame temperature distribution based on deep learning and light field imaging[D]. [Master dissertation], Southeast University, 2021. doi: 10.27014/d.cnki.gdnau.2021.004361.
    [6] 孫安泰. 基于深度學(xué)習(xí)的火焰三維溫度場層析重建及預(yù)測研究[D]. [碩士論文], 哈爾濱工業(yè)大學(xué), 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.

    SUN Antai. Tomography reconstruction and prediction of three-dimensional temperature field of flame based on deep learning[D]. [Master dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.
    [7] TIAN Chunwei, FEI Lunke, ZHENG Wenxian, et al. Deep learning on image denoising: An overview[J]. Neural Networks, 2020, 131: 251–275. doi: 10.1016/j.neUNet.2020.07.025.
    [8] CAI Minnan, LUO Weiyi, XU Wenjiang, et al. Development of learning-based noise reduction and image reconstruction algorithm in two dimensional Rayleigh thermometry[J]. Optik, 2021, 248: 168082. doi: 10.1016/j.ijleo.2021.168082.
    [9] 鄧安東. 基于深度學(xué)習(xí)的火焰溫度場重建及火焰圖像降噪方法研究[D]. [碩士論文], 上海交通大學(xué), 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.

    DENG Andong. Research on temperature field reconstruction and image denoising of flame based on deep learning[D]. [Master dissertation], Shanghai Jiao Tong University, 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.
    [10] NIU Zhitian, QI Hong, SHI Jingwen, et al. Three-dimensional rapid visualization of flame temperature field via compression and noise reduction of light field imaging[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106270. doi: 10.1016/j.icheatmasstransfer.2022.106270.
    [11] 李曉歡, 王霞, 王叢赫, 等. 基于殘差UNet的水下Mueller矩陣圖像去散射算法[J]. 光學(xué)學(xué)報(bào), 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.

    LI Xiaohuan, WANG Xia, WANG Conghe, et al. De-scattering algorithm for underwater mueller matrix images based on residual UNet[J]. Acta Optica Sinica, 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.
    [12] 李瀟凡, 王勝強(qiáng), 翁軒, 等. 基于UNet深度學(xué)習(xí)算法的東海大型漂浮藻類遙感監(jiān)測[J]. 光學(xué)學(xué)報(bào), 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.

    LI Xiaofan, WANG Shengqiang, WENG Xuan, et al. Remote sensing of floating macroalgae blooms in the East China Sea based on UNet deep learning model[J]. Acta Optica Sinica, 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.
    [13] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2480–2495. doi: 10.1109/TPAMI.2020.2968521.
    [14] THECKEDATH D and SEDAMKAR R R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks[J]. SN Computer Science, 2020, 1(2): 79. doi: 10.1007/s42979-020-0114-9.
    [15] 寇旗旗, 程志威, 程德強(qiáng), 等. 基于藍(lán)圖分離卷積的輕量化礦井圖像超分辨率重建方法[J]. 煤炭學(xué)報(bào), 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.

    KOU Qiqi, CHENG Zhiwei, CHENG Deqiang, et al. Lightweight super resolution method based on blueprint separable convolution for mine image[J]. Journal of China Coal Society, 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.
    [16] 馮宇旭, 李裕梅. 深度學(xué)習(xí)優(yōu)化器方法及學(xué)習(xí)率衰減方式綜述[J]. 數(shù)據(jù)挖掘, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.

    FENG Yuxu and LI Yumei. An overview of deep learning optimization methods and learning rate attenuation methods[J]. Hans Journal of Data Mining, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.
    [17] LIU Jiaming, SUN Yu, XU Xiaojian, et al. Image restoration using total variation regularized deep image prior[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7715–7719. doi: 10.1109/ICASSP.2019.8682856.
    [18] 周成, 黃賀艷, 劉兵, 等. 基于混合散斑圖的壓縮計(jì)算鬼成像方法研究[J]. 光學(xué)學(xué)報(bào), 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.

    ZHOU Cheng, HUANG Heyan, LIU Bing, et al. Hybrid speckle-pattern compressive computational ghost imaging[J]. Acta Optica Sinica, 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.
    [19] 孫俊, 許傳龍, 張彪, 等. 多焦距微透鏡陣列光場成像火焰三維溫度場測量[J]. 工程熱物理學(xué)報(bào), 2017, 38(10): 2164–2170.

    SUN Jun, XU Chuanlong, ZHANG Biao, et al. Three-dimensional temperature measurement of the flame using the light field camera with a multiple focus microlens array[J]. Journal of Engineering Thermophysics, 2017, 38(10): 2164–2170.
    [20] 龍超, 金恒, 黎玲, 等. 基于特征融合的非局部均值CT圖像降噪[J]. 光學(xué)學(xué)報(bào), 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.

    LONG Chao, JIN Heng, LI Ling, et al. CT Image denoising with non-local means based on feature fusion[J]. Acta Optica Sinica, 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.
    [21] SARA U, AKTER M, and UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8–18. doi: 10.4236/jcc.2019.73002.
    [22] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    [23] MURALI V and SUDEEP P V. Image denoising using DnCNN: An exploration study[M]. JAYAKUMARI J, KARAGIANNIDIS G K, MA Maode, et al. Advances in Communication Systems and Networks: Select Proceedings of ComNet 2019. Singapore: Springer, 2020: 847–859. doi: 10.1007/978-981-15-3992-3_72.
    [24] TIAN Chunwei, XU Yong, and ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461–473. doi: 10.1016/j.neunet.2019.08.022.
    [25] WEISS K, KHOSHGOFTAAR T M, and WANG Dingding. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9. doi: 10.1186/s40537-016-0043-6.
    [26] SINHA D and EL-SHARKAWY M. Thin mobilenet: An enhanced mobilenet architecture[C]. The 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, USA, 2019: 280–285. doi: 10.1109/UEMCON47517.2019.8993089.
  • 加載中
圖(10) / 表(2)
計(jì)量
  • 文章訪問數(shù):  37
  • HTML全文瀏覽量:  13
  • PDF下載量:  9
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-22
  • 網(wǎng)絡(luò)出版日期:  2025-03-05

目錄

    /

    返回文章
    返回