一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于同態(tài)加密和群簽名的可驗(yàn)證聯(lián)邦學(xué)習(xí)方案

李亞紅 李一婧 楊小東 張?jiān)?/a>,  牛淑芬

李亞紅, 李一婧, 楊小東, 張?jiān)? 牛淑芬. 基于同態(tài)加密和群簽名的可驗(yàn)證聯(lián)邦學(xué)習(xí)方案[J]. 電子與信息學(xué)報(bào). doi: 10.11999/JEIT240796
引用本文: 李亞紅, 李一婧, 楊小東, 張?jiān)? 牛淑芬. 基于同態(tài)加密和群簽名的可驗(yàn)證聯(lián)邦學(xué)習(xí)方案[J]. 電子與信息學(xué)報(bào). doi: 10.11999/JEIT240796
LI Yahong, LI Yijing, YANG Xiaodong, ZHANG Yuan, NIU Shufen. A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240796
Citation: LI Yahong, LI Yijing, YANG Xiaodong, ZHANG Yuan, NIU Shufen. A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240796

基于同態(tài)加密和群簽名的可驗(yàn)證聯(lián)邦學(xué)習(xí)方案

doi: 10.11999/JEIT240796
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62461032),甘肅省科技計(jì)劃(22JR5RA158,22JR5RA350),甘肅省高校教師創(chuàng)新基金項(xiàng)目(2023A-041, 2023-ZD-234),蘭州交通大學(xué)-天津大學(xué)聯(lián)合創(chuàng)新基金項(xiàng)目(LH2024003)
詳細(xì)信息
    作者簡(jiǎn)介:

    李亞紅:女,博士,副教授,研究方向?yàn)槊艽a學(xué)與信息安全

    李一婧:女,碩士生,研究方向?yàn)槁?lián)邦學(xué)習(xí)與密碼學(xué)

    楊小東:男,博士,教授,研究方向?yàn)閼?yīng)用密碼學(xué)與信息安全

    張?jiān)矗耗校┦?,教授,研究方向?yàn)閼?yīng)用密碼學(xué)與信息安全

    牛淑芬:女,博士,教授,研究方向?yàn)樵朴?jì)算和大數(shù)據(jù)網(wǎng)絡(luò)的隱私保護(hù)

    通訊作者:

    李亞紅 liyahong@lzjtu.edu.cn

  • 中圖分類號(hào): TN918; TP309.7

A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature

Funds: The National Natural Science Foundation of China (62461032), Gansu Science and Technology Plan (22JR5RA158,22JR5RA350), Gansu Province University Teachers Innovation Fund Project (2023A-041, 2023-ZD-234), Lanzhou Jiaotong University-Tianjin University Joint Innovation Fund Project (LH2024003)
  • 摘要: 在車載網(wǎng)絡(luò)(VANETs)中,聯(lián)邦學(xué)習(xí)(FL)通過協(xié)同訓(xùn)練機(jī)器學(xué)習(xí)模型,實(shí)現(xiàn)了車輛間的數(shù)據(jù)隱私保護(hù),并提高了整體模型的性能。然而,F(xiàn)L在VANETs中的應(yīng)用仍面臨諸多挑戰(zhàn),如模型泄露風(fēng)險(xiǎn)、訓(xùn)練結(jié)果驗(yàn)證困難以及高計(jì)算和通信成本等問題。針對(duì)這些問題,該文提出一種面向聯(lián)邦學(xué)習(xí)的可驗(yàn)證隱私保護(hù)批量聚合方案。首先,該方案基于Boneh-Lynn-Shacham (BLS)動(dòng)態(tài)短群聚合簽名技術(shù),保護(hù)了客戶端與路邊單元(RSU)交互過程中的數(shù)據(jù)完整性,確保全局梯度模型更新與共享過程的不可篡改性。當(dāng)出現(xiàn)異常結(jié)果時(shí),方案利用群簽名的特性實(shí)現(xiàn)車輛的可追溯性。其次,結(jié)合改進(jìn)的Cheon-Kim-Kim-Song (CKKS)線性同態(tài)哈希算法,對(duì)梯度聚合結(jié)果進(jìn)行驗(yàn)證,確保在聯(lián)邦學(xué)習(xí)的聚合過程中保持客戶端梯度的機(jī)密性,并驗(yàn)證聚合結(jié)果的準(zhǔn)確性,防止服務(wù)器篡改數(shù)據(jù)導(dǎo)致模型訓(xùn)練無效的問題。此外,該方案還支持車輛在部分掉線的情況下繼續(xù)更新模型,保障系統(tǒng)的穩(wěn)定性。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有方案相比,該方案在提升數(shù)據(jù)隱私安全性和結(jié)果的可驗(yàn)證性的同時(shí),保證了較高效率。
  • 圖  1  系統(tǒng)模型

    圖  2  計(jì)算開銷對(duì)比

    圖  3  通信開銷對(duì)比

    圖  4  聚合服務(wù)器運(yùn)行時(shí)間

    圖  5  準(zhǔn)確率對(duì)比

    表  1  密碼學(xué)操作執(zhí)行時(shí)間

    符號(hào) 描述 運(yùn)行時(shí)間(ms)
    ${T_{{\text{bp}}}}$ 雙線性對(duì)操作 1.118 1
    ${T_{\text{h}}}$ 映射到$G$的哈希操作 0.019 3
    ${T_{\text{m}}}$ $G$下的乘法操作 0.001 1
    ${T_{\text{a}}}$ $G$下的加法操作 0.000 4
    ${T_{\text{e}}}$ $Z_p^*$下的指數(shù)操作 0.065 0
    ${T_{{\text{o - enc}}}}$ 一次性密碼本加密 0.394 0
    ${T_{{\text{o - dec}}}}$ 一次性密碼本解密 0.442 0
    ${T_{{\text{dn - enc}}}}$ DH密鑰交換加密 2.761 1
    ${T_{{\text{dh - dec}}}}$ DH密鑰交換解密 0.008 7
    ${T_{{\text{c - enc}}}}$ CKKS加密 2.350 4
    ${T_{{\text{c - dec}}}}$ CKKS解密 0.055 8
    下載: 導(dǎo)出CSV

    表  2  計(jì)算開銷對(duì)比

    方案 客戶端計(jì)算開銷(ms) 聚合服務(wù)器計(jì)算開銷(ms)
    文獻(xiàn)[12] $n(19{T_{\text{m}}} + 13{T_a} + {T_{\text{h}}} + 2{T_{{\text{bp}}}} + {T_{\text{e}}} + {T_{{\text{o-enc}}}})$ $(9n + 8){T_{\text{m}}} + (5n + 2){T_{{\text{bp}}}} + (9n + 6){T_{\text{a}}} + {T_{\text{h}}} + 2{T_{\text{e}}} + {T_{{\text{o-dec}}}}$
    文獻(xiàn)[13] $n{T_{{\text{o-enc}}}} + n(19{T_{\text{m}}} + 13{T_{\text{a}}} + {T_{\text{h}}} + 2{T_{{\text{bp}}}} + {T_{\text{e}}})$ $24n{T_{\text{m}}} + (4n + 2){T_{{\text{bp}}}} + 11n{T_{\text{e}}} + 26n{T_{\text{a}}} + (n + 1){T_{\text{h}}}$
    所提方案 $n({T_{{\text{c-enc}}}} + {T_{\text{m}}} + {T_{\text{h}}})$ $(7n - 1){T_{\text{m}}} + (3n + 1){T_{{\text{bp}}}} + 10n{T_{\text{a}}} + (3n + 2){T_{\text{h}}} + n{T_{{\text{c-dec}}}}$
    下載: 導(dǎo)出CSV

    表  3  通信開銷對(duì)比

    方案客戶端與聚合服務(wù)器間通信聚合服務(wù)器間通信
    文獻(xiàn)[12]$7|G| + 3|Z_p^*| + |T|$$7|G| + 2|Z_p^*| + |{\text{ID}}| + |T|$
    文獻(xiàn)[13]$7|G| + 2|Z_p^*| + |T|$$6|G| + 2|Z_p^*| + |T|$
    所提方案$7|G| + |Z_p^*|$$7|G| + |Z_p^*| + |T|$
    下載: 導(dǎo)出CSV

    表  4  隱私保護(hù)強(qiáng)度數(shù)據(jù)表

    操作次數(shù)$k$累積噪聲$N(k)$隱私保護(hù)強(qiáng)度$S$
    10$1.1 \times {10^{ - 5}}$0.998 9
    50$5.1 \times {10^{ - 5}}$0.994 9
    100$1.01 \times {10^{ - 4}}$0.989 9
    500$5.001 \times {10^{ - 4}}$0.949 9
    下載: 導(dǎo)出CSV
  • [1] WEN Jie, ZHANG Zhixia, LAN Yang, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513–535. doi: 10.1007/s13042-022-01647-y.
    [2] LI Li, FAN Yuxi, TSE M, et al. A review of applications in federated learning[J]. Computers & Industrial Engineering, 2020, 149: 106854. doi: 10.1117/12.2675351.
    [3] 魏立斐, 張無忌, 張蕾, 等. 基于本地差分隱私的異步橫向聯(lián)邦安全梯度聚合方案[J]. 電子與信息學(xué)報(bào), 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.

    WEI Lifei, ZHANG Wuji, ZHANG Lei, et al. A Secure Gradient Aggregation Scheme Based on Local Differential Privacy in Asynchronous Horizontal Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
    [4] QU Zhiguo, TANG Yang, MUHAMMAD G, et al. Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion[J]. Information Fusion, 2023, 98: 101824. doi: 10.1016/j.inffus.2023.101824.
    [5] LI Zhang, XU Jianbo, VIJAYAKUMAR P, et al. Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(5): 2864–2880. doi: 10.1109/TNSE.2022.3185327.
    [6] TAMILARASI G, GANDHI K R, and PALANISAMY V. Improved Homomorphic Encryption with Optimal Key Generation Technique for VANETs[J]. Intelligent Automation & Soft Computing, 2022, 33(2). doi: 10.32604/iasc.2022.024687.
    [7] WIBAWA F, CATAK F O, KUZLU M, et al. Homomorphic encryption and federated learning based privacy-preserving CNN training: Covid-19 detection use-case[C]. Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference. Barcelona, Spain, 2022: 85-90. doi: 10.1145/3528580.3532845.
    [8] ZHANG Jiale, LIU Yue, WU Di, et al. VPFL: A verifiable privacy-preserving federated learning scheme for edge computing systems[J]. Digital Communications and Networks, 2023, 9(4): 981–989. doi: 10.1016/j.dcan.2022.05.010.
    [9] WANG Peng, and LIU Yining. SEMA: Secure and efficient message authentication protocol for VANETs[J]. IEEE systems journal, 2021, 15.(1): 846–855. doi: 10.1109/JSYST.2021.3051435.
    [10] AN Haoyang, HE Debiao, BAO Zijian, et al. An identity-based dynamic group signature scheme for reputation evaluation systems[J]. Journal of Systems Architecture, 2023, 139: 102875. doi:org/ 10.1016/j.sysarc.2023.102875. doi: 10.1016/j.sysarc.2023.102875.
    [11] 張海波, 陳舟, 黃宏武, 等. VANET 系統(tǒng)中基于中國(guó)剩余定理的群內(nèi)相互認(rèn)證密鑰協(xié)商協(xié)議[J]. 通信學(xué)報(bào), 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.

    ZHANG Haibo, CHEN Zhou, HUANG Hongwu, et al. Intra-group mutual authentication key agreement protocol based on Chinese remainder theorem in VANET system[J]. Journal on Communications, 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.
    [12] XIA Feng, LIU Haiyang, YANG Haowei, et al. Batch-Aggregate: Efficient Aggregation for Private Federated Learning in VANETs[J]. IEEE Transactions on Dependable and Secure Computing, 2024.1-15. doi: 10.1109/TDSC.2024.3364371.
    [13] XIA Feng, WANG Xiaofeng, LIU Haiyang, et al. A Privacy-preserving Aggregation Scheme with Continuous Authentication for Federated Learning in VANETs[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9465–9477. doi: 10.1109/TVT.2024.3369942.
    [14] WANG Ruyan, YUAN Xingmin, YANG Zhigang, et al. RFLPV: A robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT[J]. Information Fusion, 2024, 102: 102029. doi: 10.1016/j.inffus.2023.102029.
    [15] CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23. Springer International Publishing, 2017. doi: 10.1007/978-3-319-70694-8_15.
    [16] LEE Y, LEE J W, and KIM Y S. Near-Optimal Polynomial for Modulus Reduction Using L2-Norm for Approximate Homomorphic Encryption[J]. IEEE Access, vol. 8, pp. 144321-144330, 2020. doi: 10.1109/ACCESS.2020.3014369.
    [17] 王勇. 聯(lián)邦學(xué)習(xí)模型安全聚合關(guān)鍵技術(shù)研究[D]. [博士論文]. 安徽師范大學(xué), 2024. doi: 10.26920/d.cnki.gansu.2024.000005.

    WANG Yong, Research on key technologies of secure model aggregation for federated learning[D]. [Ph. D. dissertation], Anhui Normal University, 2024. doi: 10.26920/d.cnki.gansu.2024.000005.
  • 加載中
圖(5) / 表(4)
計(jì)量
  • 文章訪問數(shù):  131
  • HTML全文瀏覽量:  41
  • PDF下載量:  34
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-09-14
  • 修回日期:  2025-02-17
  • 網(wǎng)絡(luò)出版日期:  2025-02-21

目錄

    /

    返回文章
    返回