偽碼調(diào)相-線性調(diào)頻的低軌導(dǎo)航信號波形及捕獲性能
doi: 10.11999/JEIT240650
-
1.
國防科技大學(xué)電子科學(xué)學(xué)院 長沙 410073
-
2.
導(dǎo)航與時空技術(shù)國家級重點實驗室 長沙 410073
A Code-phase Shift Key-Linear Frequency Modulated Low Earth Orbit Navigation Signal and Acquisition Performance Analysis
-
1.
College of Electronic Science, National University of Defense Technology, Changsha 410073, China
-
2.
State Key Laboratory for Position, Navigation and Time, Changsha 410073, China
-
摘要: 低軌導(dǎo)航星座衛(wèi)星數(shù)量多,信號多普勒頻偏大,接收機冷啟動搜索空間巨大,捕獲速度慢,該文提出一種偽碼調(diào)相-線性調(diào)頻(CSK-LFM)的導(dǎo)航信號波形,線性調(diào)頻提高信號的多普勒容限,不同偽碼相位實現(xiàn)不同衛(wèi)星的多址播發(fā),可以極大壓縮衛(wèi)星號、時延、多普勒3維搜索空間,加快了捕獲信號捕獲速度。仿真和實驗結(jié)果表明,當(dāng)信號強度為40 dBHz時,采用CSK-LFM調(diào)制的導(dǎo)航信號,其捕獲性能比同等條件下的傳統(tǒng)直接擴頻序列(DSSS)調(diào)制的導(dǎo)航信號高1 dB左右,且信號搜索空間可降低為直接擴頻序列調(diào)制的1/10。
-
關(guān)鍵詞:
- 低軌導(dǎo)航信號 /
- 線性調(diào)頻 /
- CSK調(diào)制 /
- 信號捕獲
Abstract:Objective The provision of satellite navigation services through Low Earth Orbit (LEO) constellations has become a prominent topic in the Position, Navigation and Timing (PNT) system. Although LEO satellites offer low spatial propagation loss and high signal power at ground level. However, their high-speed movement results in significant dynamics in the signal, leading to considerable Doppler frequency shifts that affect signal reception on the ground. This dynamic environment increases the frequency search space required by receivers. Furthermore, LEO constellations typically comprise hundreds or even thousands of satellites to achieve global coverage, further expanding the search space for satellite signals at terminals. Consequently, during cold start conditions, the LEO satellite navigation system faces a substantial increase in the search range for navigation signals, presenting significant challenges for signal acquisition. Existing GPS, BDS, GALILEO, and other navigation signals primarily utilize BPSK-CDMA modulation, relying on spread spectrum sequences to differentiate various satellite signals. However, these existing signals exhibit limited resistance to Doppler frequency offsets. Therefore, research into signal waveforms that are more suitable for LEO satellite navigation systems is crucial. Such research aims to enhance the anti-Doppler frequency offset capability and multi-access performance under conditions involving numerous satellites, thereby improving the signal acquisition performance of LEO navigation terminals and enhancing the overall availability of LEO navigation systems. Methods This paper adopts a multi-faceted research approach including theoretical analysis, simulation experiments, and comparative analysis. Since the performance of the correlation function directly impacts signal acquisition performance, an initial theoretical analysis of the correlation function and the multiple access capabilities of the proposed signal is conducted. Following this, the corresponding capture detection metrics and decision-making methods are proposed based on the principles of signal capture. The investigation continues with a focus on optimizing capture parameters, followed by verification of the signal’s acquisition performance through simulations and experiments. Additionally, the performance of the proposed signal is compared to that of traditional navigation signals using both theoretical and simulation analyses. Results and Discussions The theoretical analysis outcomes reveal that the proposed Code-phase Shift Key-Linear Frequency Modulated (CSK-LFM) signal exhibits lower Doppler loss, delay loss, and multiple access loss when compared to the traditional Binary Phase Shift Keying–Code Division Multiple Access (BPSK-CDMA) signal. To minimize the loss of signal detection capacity, it is advisable to expand the signal bandwidth and reduce the spread spectrum ratio during the signal design phase. A satellite parallel search method is developed for the acquisition of the CSK-LFM signal, employing a Partial Match Filter-Fast Fourier Transformations (PMF-FFT) approach. A parameter optimization model has also been developed to enhance the acquisition performance of the CSK-LFM signal. Furthermore, the acquisition performance of CSK-LFM and BPSK-CDMA signals are compared. Under the same conditions, the acquisition and search space required for the BPSK-CDMA signal is larger than that of the CSK-LFM signal. It is noteworthy that, under equivalent dynamic conditions, the acquisition performance of the CSK-LFM signal is approximately 1 dB superior to that of the BPSK-CDMA signal. Lastly, experimental results confirm that the proposed satellite parallel search method based on the PMF-FFT acquisition algorithm is effective for the acquisition of CSK-LFM signals. Conclusions To address the challenge of achieving rapid signal acquisition in low-orbit satellite navigation systems, a hybrid modulation scheme, CSK-LFM is designed. The LFM modulation improves the signal’s Doppler tolerance, while the use of diverse pseudo-code phases enables multiple access broadcasts from different satellites. This design compresses the three-dimensional search space involving satellite count, time delay, and Doppler shift. Additionally, a satellite parallel search method is implemented based on a PMF-FFT acquisition algorithm for the CSK-LFM signal. An optimization model for acquisition parameters is also developed to enhance performance. Our comparative analysis of the acquisition performance between CSK-LFM and BPSK-CDMA signals demonstrates that at a signal intensity of 40 dBHz, the navigation signal using CSK-LFM modulation achieves an acquisition performance approximately 1 dB superior to that of the BPSK-CDMA modulation signal under identical conditions; furthermore, the signal search space can be reduced to one-tenth that of the BPSK-CDMA modulation signal. -
表 1 不同調(diào)制方式下抗多普勒頻偏能力和多址方式分析對比
調(diào)制方式 抗多普勒能力 信號多址方式 典型應(yīng)用 直接序列調(diào)制 弱 不同碼序列 GSP、北斗、伽利略等系統(tǒng) 頻分復(fù)用調(diào)制 弱 不同頻點 GLONASS系統(tǒng) 碼相位偏移調(diào)制 弱 不同碼相位 數(shù)據(jù)鏈、QZSS等系統(tǒng)中信息調(diào)制 線性調(diào)頻調(diào)制 強 不同調(diào)頻斜率、起始頻率等 雷達系統(tǒng),Lora系統(tǒng) 偽碼-線性調(diào)頻調(diào)制 強 不同調(diào)頻斜率、起始頻率、碼序列 - 下載: 導(dǎo)出CSV
表 2 不同帶寬和擴頻比下的頻率分格大小(kHz)
N 31 63 127 255 511 CSK-LFM B=4.092 MHz 79.20 38.97 19.33 9.63 4.80 B=20.46 MHz 396.00 194.85 96.66 48.14 24.02 B=40.92 MHz 792.00 389.71 193.32 96.28 48.05 BPSK-CDMA T=1 ms 0.9 下載: 導(dǎo)出CSV
1 基于PMF-FFT 結(jié)構(gòu)的CSK-LFM 捕獲算法
步驟1 生成本地復(fù)制的線性調(diào)頻載波sl(k) 步驟2 生成本地復(fù)制偽碼cl(n),并進行FFT運算,求復(fù)共軛,得到參考序列Cl(j)* 步驟3 在調(diào)頻周期內(nèi)將復(fù)制線性調(diào)頻載波與接收信號相關(guān)并分段累加,得到累加結(jié)果y(n) 步驟4 對一個調(diào)頻周期內(nèi)的N段累加結(jié)果進行FFT運算,得到序列Y(j) 步驟5 將FFT結(jié)果與參考序列相關(guān),對相關(guān)后的結(jié)果逆FFT處理,得到N顆衛(wèi)星的捕獲量z(k,i) 步驟6 對P個調(diào)頻周期內(nèi)的捕獲量z(k,i)累加,得到Z(k,i),并與門限比較,超過門限則捕獲成功,跳至步驟9 步驟7 移動接收信號一個采樣點,重復(fù)步驟3–步驟6,直至遍歷完成2個調(diào)頻周期 步驟8 移動一個頻率搜索格子,重復(fù)步驟1–步驟7,直至遍歷完成所有頻率格子的搜索 步驟9 在上調(diào)頻信號捕獲時延附近,搜索上調(diào)頻和下調(diào)頻信號,根據(jù)捕獲位置按式(29)計算捕獲時延和多普勒 下載: 導(dǎo)出CSV
表 4 兩類信號的搜索空間比較
多普勒范圍(kHz) 多普勒格子(kHz) 搜索空間 多普勒范圍(kHz) 多普勒格子(kHz) 搜索空間 BPSK-CDMA case4 ±5 0.5 8 184×20 case5 ±40 0.5 8 184×160 CSK-LFM case4-1 2.5 8 184×8 case5-1 2.5 8 184×64 case4-2 10.0 8 184×2 case5-2 10.0 8 184×16 下載: 導(dǎo)出CSV
-
[1] 李俊. 基于聯(lián)邦卡爾曼濾波器的容錯多傳感器組合導(dǎo)航算法研究[D]. [碩士論文], 南京郵電大學(xué), 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673.LI Jun. Research on fault tolerant multi-sensor integrated navigation algorithm based on federated Kalman filter[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673. [2] 王玉, 邊啟慧, 廖軍, 等. 慣性穩(wěn)定萬向架中基于SBG慣導(dǎo)的捷聯(lián)控制技術(shù)[J]. 光電工程, 2023, 50(5): 220238. doi: 10.12086/oee.2023.220238.WANG Yu, BIAN Qihui, LIAO Jun, et al. Strapdown inertial stabilization technology based on SBG inertial navigation in inertial stabilization gimbal[J]. Opto-Electronic Engineering, 2023, 50(5): 220238. doi: 10.12086/oee.2023.220238. [3] 鄒濤, 王麗芬, 任元, 等. 冗余旋轉(zhuǎn)慣導(dǎo)系統(tǒng)兩位置初始對準方法[J]. 紅外與激光工程, 2023, 52(1): 20220414. doi: 10.3788/IRLA20220414.ZOU Tao, WANG Lifen, REN Yuan, et al. Two-position initial alignment method for redundant rotating inertial navigation system[J]. Infrared and Laser Engineering, 2023, 52(1): 20220414. doi: 10.3788/IRLA20220414. [4] 張小紅, 馬福建. 低軌導(dǎo)航增強GNSS發(fā)展綜述[J]. 測繪學(xué)報, 2019, 48(9): 1073–1087. doi: 10.11947/j.AGCS.2019.20190176.ZHANG Xiaohong and MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073–1087. doi: 10.11947/j.AGCS.2019.20190176. [5] 聶欣, 鄭晉軍, 范本堯. 低軌衛(wèi)星導(dǎo)航系統(tǒng)技術(shù)發(fā)展研究[J]. 航天器工程, 2022, 31(1): 116–124. doi: 10.3969/j.issn.1673-8748.2022.01.016.NIE Xin, ZHENG Jinjun, and FAN Benyao. Study on development of technology path for LEO satellite navigation system[J]. Spacecraft Engineering, 2022, 31(1): 116–124. doi: 10.3969/j.issn.1673-8748.2022.01.016. [6] 王磊, 李德仁, 陳銳志, 等. 低軌衛(wèi)星導(dǎo)航增強技術(shù)——機遇與挑戰(zhàn)[J]. 中國工程科學(xué), 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018.WANG Lei, LI Deren, CHEN Ruizhi, et al. Low earth orbiter (LEO) navigation augmentation: Opportunities and challenges[J]. Strategic Study of CAE, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018. [7] 王磊, 陳銳志, 李德仁, 等. 珞珈一號低軌衛(wèi)星導(dǎo)航增強系統(tǒng)信號質(zhì)量評估[J]. 武漢大學(xué)學(xué)報: 信息科學(xué)版, 2018, 43(12): 2191–2196. doi: 10.13203/j.whugis20180413.WANG Lei, CHEN Ruizhi, LI Deren, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191–2196. doi: 10.13203/j.whugis20180413. [8] 陳延濤, 董彬虹, 李昊, 等. 一種高動態(tài)低信噪比環(huán)境下基于多樣本點串行快速傅里葉變換的信號捕獲方法[J]. 電子與信息學(xué)報, 2021, 43(6): 1691–1697. doi: 10.11999/JEIT200149.CHEN Yantao, DONG Binhong, LI Hao, et al. A signal acquisition method based on multi-sample serial fast Fourier transform in high dynamic and low SNR environment[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1691–1697. doi: 10.11999/JEIT200149. [9] BORRE K, AKOS D M, BERTELSEN N, et al, 楊東凱, 張飛舟, 張波, 譯. 軟件定義的GPS和伽利略接收機[M]. 北京: 國防工業(yè)出版社, 2009.BORRE K, AKOS D M, BERTELSEN N, et al, YANG Dongkai, ZHANG Feizhou, and ZHANG Bo, translation. A Software-Defined GPS and Galileo Receiver[M]. Beijing: National Defense Industry Press, 2009. [10] COOK C E and BERNFELD M. Radar Signals: An Introduction to Theory and Application[M]. New York: Academic Press, 1967. [11] SPRINGER A, GUGLER W, HUEMER M, et al. Spread spectrum communications using chirp signals[C]. The IEEE/AFCEA EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security, Munich, Germany, 2000: 166–170. doi: 10.1109/EURCOM.2000.874794. [12] JIN Xiaoping, ZHANG Peng, WAN Chuan, et al. RIS assisted dual-function radar and secure communications based on frequency-shifted chirp spread spectrum index modulation[J]. China Communications, 2023, 20(10): 85–99. doi: 10.23919/JCC.fa.2023-0143.202310. [13] GENG Xue, CHEN Zhuo, YANG Haixiao, et al. Timing synchronization based on Radon–Wigner transform of chirp signals for OTFS systems[J]. Physical Communication, 2023, 60: 102161. doi: 10.1016/J.PHYCOM.2023.102161. [14] PASOLINI G. On the LoRa chirp spread spectrum modulation: Signal properties and their impact on transmitter and receiver architectures[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 357–369. doi: 10.1109/TWC.2021.3095667. [15] EGEA-ROCA D, LóPEZ-SALCEDO J, SECO-GRANADOS G, et al. Performance analysis of a multi-slope chirp spread spectrum signal for PNT in a LEO constellation[C]. 2022 10th Workshop on Satellite Navigation Technology, Noordwijk, Netherlands, 2022: 1–9. doi: 10.1109/NAVITEC53682.2022.9847559. [16] ORTEGA L, VILà-VALLS J, and CHAUMETTE E. Non-binary PRN-chirp modulation: A GNSS fast acquisition signal waveform[J]. IEEE Communications Letters, 2022, 26(9): 2151–2155. doi: 10.1109/LCOMM.2022.3185319. [17] QIAN Yubi, MA Lu, and LIANG Xuwen. Symmetry chirp spread spectrum modulation used in LEO satellite internet of things[J]. IEEE Communications Letters, 2018, 22(11): 2230–2233. doi: 10.1109/LCOMM.2018.2866820. [18] 周新剛, 趙惠昌, 劉鳳格, 等. 偽碼調(diào)相與線性調(diào)頻復(fù)合調(diào)制引信[J]. 宇航學(xué)報, 2008, 29(3): 1026–1030. doi: 10.3873/j.issn.1000-1328.2008.03.055.ZHOU Xingang, ZHAO Huichang, LIU Fengge, et al. Pseudo—random code binary phase modulation combined with linear frequency modulation Fuze[J]. Journal of Astronautics, 2008, 29(3): 1026–1030. doi: 10.3873/j.issn.1000-1328.2008.03.055. [19] ZHAO Xin, HUANG Xinming, TANG Xiaomei, et al. Chirp pseudo-noise signal and its receiving scheme for LEO enhanced GNSS[J]. IET Radar, Sonar & Navigation, 2022, 16(1): 34–50. doi: 10.1049/rsn2.12162. [20] 王雷. 通信導(dǎo)航一體化關(guān)鍵技術(shù)研究[D]. [博士論文], 國防科技大學(xué), 2020. doi: 10.27052/d.cnki.gzjgu.2020.000271.WANG Lei. Research on key techniques of integration of communication and navigation[D]. [Ph. D. dissertation], National University of Defense Technology, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000271. [21] 嚴濤, 田野, 李天, 等. CSK調(diào)制信號的跟蹤方法[J]. 中國空間科學(xué)技術(shù), 2023, 43(2): 117–127. doi: 10.16708/j.cnki.1000-758X.2023.0026.YAN Tao, TIAN Ye, LI Tian, et al. Tracking method for code shift keying (CSK) modulated signal[J]. Chinese Space Science and Technology, 2023, 43(2): 117–127. doi: 10.16708/j.cnki.1000-758X.2023.0026. [22] 靳舒馨, 姚錚, 賈深惠, 等. CSK調(diào)制在GNSS系統(tǒng)中的應(yīng)用[C]. 第八屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會論文集——S03衛(wèi)星導(dǎo)航信號與信號處理, 上海, 2017.JIN Shuxin, YAO Zheng, JIA Shenhui, et al. Research on the application of CSK in the GNSS system[C]. The CSNC2017, Shanghai, China, 2017. [23] 李曄, 周國棟, 肖林偉, 等. 基于部分輸出FFT的CSK信號高效解調(diào)算法[J]. 全球定位系統(tǒng), 2022, 47(3): 73–78. doi: 10.12265/j.gnss.2022019.LI Ye, ZHOU Guodong, XIAO Linwei, et al. An efficient demodulation algorithm for CSK modulated signals based on partial output FFT[J]. GNSS World of China, 2022, 47(3): 73–78. doi: 10.12265/j.gnss.2022019. [24] 王環(huán)宇, 袁木子, 馬春江, 等. 基于BPSK-CSK的電文調(diào)制與解調(diào)算法[J]. 全球定位系統(tǒng), 2022, 47(6): 38–45. doi: 10.12265/j.gnss.2022170.WANG Huanyu, YUAN Muzi, MA Chunjiang, et al. Research on BPSK-CSK message modulation and demodulation algorithm[J]. GNSS World of China, 2022, 47(6): 38–45. doi: 10.12265/j.gnss.2022170. [25] 林紅磊, 唐小妹, 劉瀛翔, 等. 一種含導(dǎo)頻GNSS信號的通道組合捕獲檢測量的設(shè)計與優(yōu)化[J]. 中南大學(xué)學(xué)報: 自然科學(xué)版, 2014, 45(4): 1105–1112.LIN Honglei, TANG Xiaomei, LIU Yingxiang, et al. A design and optimization of channel combining acquisition detection with GNSS signal containing pilot channel[J]. Journal of Central South University: Science and Technology, 2014, 45(4): 1105–1112. -