一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

多尺度加權(quán)Retinex變壓器油下圖像增強(qiáng)

強(qiáng)虎 鐘羽中 佃松宜

強(qiáng)虎, 鐘羽中, 佃松宜. 多尺度加權(quán)Retinex變壓器油下圖像增強(qiáng)[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 223-232. doi: 10.11999/JEIT240645
引用本文: 強(qiáng)虎, 鐘羽中, 佃松宜. 多尺度加權(quán)Retinex變壓器油下圖像增強(qiáng)[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 223-232. doi: 10.11999/JEIT240645
QIANG Hu, ZHONG Yuzhong, DIAN Songyi. Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex[J]. Journal of Electronics & Information Technology, 2025, 47(1): 223-232. doi: 10.11999/JEIT240645
Citation: QIANG Hu, ZHONG Yuzhong, DIAN Songyi. Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex[J]. Journal of Electronics & Information Technology, 2025, 47(1): 223-232. doi: 10.11999/JEIT240645

多尺度加權(quán)Retinex變壓器油下圖像增強(qiáng)

doi: 10.11999/JEIT240645
基金項(xiàng)目: 國家自然科學(xué)基金(62203314)
詳細(xì)信息
    作者簡介:

    強(qiáng)虎:男,博士生,研究方向?yàn)槿斯ぶ悄?、?jì)算機(jī)視覺

    鐘羽中:女,副教授,研究方向?yàn)橛?jì)算機(jī)視覺、圖像處理

    佃松宜:男,教授,研究方向?yàn)橄冗M(jìn)控制、感知與人工智能

    通訊作者:

    佃松宜 scudiansy@scu.edu.cn

  • 中圖分類號(hào): TN911.73; TP391.41

Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex

Funds: The National Natural Science Foundation of China (62203314)
  • 摘要: 針對(duì)變壓器油下圖像存在顏色失真、亮度低和細(xì)節(jié)失真問題,該文提出一種多尺度加權(quán)Retinex變壓器油下圖像增強(qiáng)算法。首先,為了緩解變壓器油下圖像顏色失真問題,提出一種混合動(dòng)態(tài)顏色通道補(bǔ)償算法,根據(jù)拍攝圖像各通道的衰減狀態(tài)對(duì)衰減通道進(jìn)行動(dòng)態(tài)補(bǔ)償。然后,為了解決細(xì)節(jié)失真問題,提出一種銳化權(quán)重加權(quán)策略。最后,該文創(chuàng)新性采用金字塔多尺度融合策略對(duì)不同尺度Retinex反射分量和相應(yīng)權(quán)重圖進(jìn)行加權(quán)融合得到變壓器油下清晰圖像。實(shí)驗(yàn)結(jié)果表明所提算法可以有效解決變壓器油下圖像復(fù)雜退化問題。
  • 圖  1  算法流程圖

    圖  2  不同尺度Retinex反射分量圖

    圖  3  不同實(shí)驗(yàn)場景

    圖  4  不同場景下采集的變壓器油下圖像

    圖  5  不同算法對(duì)圖4(a)增強(qiáng)結(jié)果

    圖  6  不同算法對(duì)圖4(b)增強(qiáng)結(jié)果

    圖  7  不同算法對(duì)圖4(c)增強(qiáng)結(jié)果

    圖  8  不同子模塊對(duì)變壓器油下圖像增強(qiáng)效果

    圖  9  所提算法對(duì)水下退化圖像增強(qiáng)效果

    1  混合動(dòng)態(tài)顏色通道補(bǔ)償

     輸入:相機(jī)拍攝圖像${I_{{\text{in}}}}$,增益系數(shù)$\omega $
     輸出:補(bǔ)償后的圖像${I_{{\text{out}}}}$
     (1) $B,G,R \leftarrow {\text{split}}({I_{{\text{in}}}})$
     (2) ${I_{{\text{Max}}}} \leftarrow \max (R,G,B)$
     (3) ${I_{{\text{Min}}}} \leftarrow \min (R,G,B)$
     (4) if ${I_{{\text{Max}}}} = \bar R$
     (5)  if ${I_{{\text{Min}}}} = \bar G$ then
     (6)   計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)$ {V}_{\mathrm{min}}=G $,
        ${V_{{\text{med}}}} = B,{V_{\max }} = R$
     (7)  end if
     (8)  if ${I_{{\text{Min}}}} = \bar B$ then
     (9)   計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)${V_{\min }} = B$, ${V_{{\text{med}}}} = G $,
        ${V_{\max }} = R$
     (10) end if
     (11) end if
     (12) if ${I_{{\text{Max}}}} = \bar B$
     (13) if ${I_{{\text{Min}}}} = \bar R$ then
     (14)  計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)${V_{\min }} = R$, ${V_{{\text{med}}}} = G $,
         ${V_{\max }} = B$
     (15) end if
     (16) if ${I_{{\text{Min}}}} = \bar G$ then
     (17)  計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)${V_{\min }} = G$, ${V_{{\text{med}}}} = R $,
        ${V_{\max }} = B$
     (18) end if
     (19) end if
     (20) if ${I_{{\text{Max}}}} = \bar G$
     (21) if ${I_{{\text{Min}}}} = \bar R$ then
     (22)  計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)${V_{\min }} = R$, ${V_{{\text{med}}}} = B $,
        ${V_{\max }} = G$
     (23) end if
     (24) if ${I_{{\text{Min}}}} = \bar B$ then
     (25)  計(jì)算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根據(jù)${V_{\min }} = B$, ${V_{{\text{med}}}} = R $,
        ${V_{\max }} = G$
     (26) end if
     (27) end if
     (28) ${I_{{\text{out}}}} \leftarrow {\text{merge}}(\bar B,\bar G,\bar R)$
     (29) return ${I_{{\text{out}}}}$
    下載: 導(dǎo)出CSV

    表  1  UIQM, FUDM和NIQE無參考圖像質(zhì)量評(píng)估結(jié)果

    指標(biāo)方法
    原圖UCMUDCPIBLAULAPWater-NetShallow-UWnetUDnet本文
    UIQM1.4761.9431.4172.1441.3792.2721.2731.8803.265
    FDUM0.1840.2240.2290.2980.2940.2490.1870.1830.379
    NIQE5.0214.8645.3155.7144.8154.8595.2404.7544.681
    下載: 導(dǎo)出CSV

    表  2  不同模塊消融實(shí)驗(yàn)

    HCC DW PF UIQM FDUM NIQE
    1.476 0.184 5.021
    1.508 0.206 4.982
    2.965 0.283 4.630
    3.112 0.343 4.501
    3.265 0.379 4.681
    下載: 導(dǎo)出CSV
  • [1] JHA M and BHANDARI A K. CBLA: Color balanced locally adjustable underwater image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5020911. doi: 10.1109/TIM.2024.3396850.
    [2] ZHANG Dehuan, WU Chenyu, ZHOU Jingchun, et al. Robust underwater image enhancement with cascaded multi-level sub-networks and triple attention mechanism[J]. Neural Networks, 2024, 169: 685–697. doi: 10.1016/j.neunet.2023.11.008.
    [3] YANG H Y, CHEN Peiyin, HUANG C C, et al. Low complexity underwater image enhancement based on dark channel prior[C]. 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, Shenzhen, China, 2011: 17–20. doi: 10.1109/IBICA.2011.9.
    [4] QIANG Hu, ZHONG Yuzhong, ZHU Yuqi, et al. Underwater image enhancement based on multichannel adaptive compensation[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5014810. doi: 10.1109/TIM.2024.3378290.
    [5] DREWS JR P, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2013: 825–830. doi: 10.1109/ICCVW.2013.113.
    [6] SONG Wei, WANG Yan, HUANG Dongmei, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]. Proceedings of the 19th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing – PCM 2018, Hefei, China, 2018: 678–688. doi: 10.1007/978-3-030-00776-8_62.
    [7] ZHANG Song, ZHAO Shili, AN Dong, et al. LiteEnhanceNet: A lightweight network for real-time single underwater image enhancement[J]. Expert Systems with Applications, 2024, 240: 122546. doi: 10.1016/j.eswa.2023.122546.
    [8] WANG Zhengyong, SHEN Liquan, XU Mai, et al. Domain adaptation for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 1442–1457. doi: 10.1109/TIP.2023.3244647.
    [9] 米澤田, 晉潔, 李圓圓, 等. 基于多尺度級(jí)聯(lián)網(wǎng)絡(luò)的水下圖像增強(qiáng)方法[J]. 電子與信息學(xué)報(bào), 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375.

    MI Zetian, JIN Jie, LI Yuanyuan, et al. Underwater image enhancement method based on multi-scale cascade network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375.
    [10] LI Chongyi, ANWAR S, and PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038.
    [11] RAO Yuan, LIU Wenjie, LI Kunqian, et al. Deep color compensation for generalized underwater image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2577–2590. doi: 10.1109/TCSVT.2023.3305777.
    [12] WANG Keyan, HU Yan, CHEN Jun, et al. Underwater image restoration based on a parallel convolutional neural network[J]. Remote Sensing, 2019, 11(13): 1591. doi: 10.3390/rs11131591.
    [13] WU Shengcong, LUO Ting, JIANG Gangyi, et al. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1213–1227. doi: 10.1109/JOE.2021.3064093.
    [14] BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1): 1–26. doi: 10.1016/0016-0032(80)90058-7.
    [15] LAND E H and MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1–11. doi: 10.1364/JOSA.61.000001.
    [16] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356.
    [17] RAHMAN Z, JOBSON D J, and WOODELL G A. Multi-scale retinex for color image enhancement[C]. The 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996: 1003–1006. doi: 10.1109/ICIP.1996.560995.
    [18] PANETTA K, GAO Chen, and AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541–551. doi: 10.1109/JOE.2015.2469915.
    [19] YANG Ning, ZHONG Qihang, LI Kun, et al. A reference-free underwater image quality assessment metric in frequency domain[J]. Signal Processing: Image Communication, 2021, 94: 116218. doi: 10.1016/j.image.2021.116218.
    [20] MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726.
    [21] IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method[C]. 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 2010: 1703–1709. doi: 10.1109/ICSMC.2010.5642311.
    [22] PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846.
    [23] LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241.
    [24] NAIK A, SWARNAKAR A, and MITTAL K. Shallow-UWnet: Compressed model for underwater image enhancement (student abstract)[C]. The Thirty-Fifth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 15853–15854. doi: 10.1609/aaai.v35i18.17923.
    [25] SALEH A, SHEAVES M, JERRY D, et al. Adaptive uncertainty distribution in deep learning for unsupervised underwater image enhancement[J]. arXiv preprint arXiv: 2212.08983, 2022.
    [26] LIU Risheng, FAN Xin, ZHU Ming, et al. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861–4875. doi: 10.1109/TCSVT.2019.2963772.
  • 加載中
圖(9) / 表(3)
計(jì)量
  • 文章訪問數(shù):  121
  • HTML全文瀏覽量:  50
  • PDF下載量:  23
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-11-08
  • 網(wǎng)絡(luò)出版日期:  2024-11-13
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回