一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

面向通感一體化的變分模態(tài)分解-希爾伯特-黃變換呼吸頻率感知算法

楊小龍 張亭亭 周牧 高銘 童睿軒

楊小龍, 張亭亭, 周牧, 高銘, 童睿軒. 面向通感一體化的變分模態(tài)分解-希爾伯特-黃變換呼吸頻率感知算法[J]. 電子與信息學報. doi: 10.11999/JEIT240640
引用本文: 楊小龍, 張亭亭, 周牧, 高銘, 童睿軒. 面向通感一體化的變分模態(tài)分解-希爾伯特-黃變換呼吸頻率感知算法[J]. 電子與信息學報. doi: 10.11999/JEIT240640
YANG Xiaolong, ZHANG Tingting, ZHOU Mu, GAO Ming, TONG Ruixuan. Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240640
Citation: YANG Xiaolong, ZHANG Tingting, ZHOU Mu, GAO Ming, TONG Ruixuan. Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240640

面向通感一體化的變分模態(tài)分解-希爾伯特-黃變換呼吸頻率感知算法

doi: 10.11999/JEIT240640
基金項目: 國家自然科學基金(62101085),重慶市教委科學技術(shù)研究項目(KJQN202400647),重慶市研究生科研創(chuàng)新項目(CYS240399)
詳細信息
    作者簡介:

    楊小龍:男,副教授,碩士生導師,研究方向為通感一體化,無線定位與感知

    張亭亭:女,碩士生,研究方向為無線定位與感知

    周牧:男,教授,博士生導師,研究方向為無線定位與感知,量子精密測量

    高銘:女,博士生,研究方向為通感一體化

    童睿軒:男,碩士生,研究方向為無線定位與感知

    通訊作者:

    周牧 zhoumu@cqupt.edu.cn

  • 中圖分類號: TN929.5

Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication

Funds: The National Natural Science Foundation of China (62101085), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400647), Chongqing Graduate Student Research Innovation Project (CYS240399)
  • 摘要: 通感一體化(ISAC)作為一種6G關(guān)鍵技術(shù),將通信和感知功能集成到Wi-Fi設(shè)備,為室內(nèi)人體呼吸頻率感知提供一種有效的方法。針對當前基于ISAC的呼吸頻率感知存在魯棒性低和“盲點”的問題,該文提出一種基于信號變分模態(tài)分解(VMD)- 希爾伯特-黃變換(HHT)呼吸頻率感知算法。首先,選擇對環(huán)境感知敏感度較強的Wi-Fi鏈路構(gòu)建信道狀態(tài)信息(CSI)比值模型。其次,將濾波后的CSI比值時間序列的各子載波進行投影,結(jié)合幅相信息生成不同呼吸模式信號的候選集。再次,對于每一個子載波,根據(jù)周期性在候選集中選擇一個短期呼吸噪聲比最大的候選序列作為最終的呼吸模式,然后設(shè)置閾值選擇子載波,并對其進行VMD和HHT時頻分析,去除人體呼吸頻率成分以外的模態(tài)分量,并重構(gòu)剩余模態(tài)分量。在此基礎(chǔ)上,利用主成分分析(PCA)對所有重構(gòu)的子載波降維,選擇方差貢獻率達到99%以上的主成分分量,并使用ReliefF算法重新構(gòu)建呼吸信號,得到融合信號。最后,對融合信號利用峰值檢測算法計算呼吸頻率。實驗結(jié)果表明,該感知方法在會議辦公室和走廊兩種場景下的平均估計精度超過97%,顯著提高了魯棒性并克服了“盲點”問題,優(yōu)于其他現(xiàn)有的感知方案。
  • 圖  1  Wi-Fi信號室內(nèi)呼吸感知示意圖

    圖  2  呼吸頻率感知算法系統(tǒng)框圖

    圖  3  Wi-Fi鏈路選擇

    圖  4  CSI投影圖

    圖  5  VMD-HHT時頻分析

    圖  6  實驗場景和設(shè)備圖

    圖  7  步長對復雜度和精度的影響

    圖  8  多天線收發(fā)系統(tǒng)實驗結(jié)果對比

    圖  9  會議辦公室實測結(jié)果

    圖  10  呼吸頻率測量結(jié)果CDF圖

    圖  11  呼吸頻率誤差箱型圖

    圖  12  5 m時10次估計值

    圖  13  走廊場景實測結(jié)果和算法復雜度比較

    表  1  收發(fā)機參數(shù)配置

    參數(shù) 發(fā)射機 接收機
    模式 Injection Monitor
    信道編號 64(5.32 GHz)
    帶寬 20 MHz
    發(fā)包速率 100 包/s
    子載波個數(shù) 30
    子載波編號 –58, –54,···, 54, 58
    發(fā)射功率 15 dBm
    下載: 導出CSV
  • [1] ISLAM S M M, MOLINAROA N, SILVESTRI S, et al. Respiratory feature extraction for contactless breathing pattern recognition using a single digital camera[J]. IEEE Transactions on Human-Machine Systems, 2023, 53(3): 642–651. doi: 10.1109/THMS.2023.3254895.
    [2] XIE Wangdong, GAN Liangyu, HUANG Leilei, et al. A real-time respiration monitoring system using WiFi sensing based on the concentric circle model[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(2): 157–168. doi: 10.1109/TBCAS.2022.3229435.
    [3] YEO M, BYUN H, LEE J, et al. Robust method for screening sleep apnea with single-lead ECG using deep residual network: Evaluation with open database and patch-type wearable device data[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5428–5438. doi: 10.1109/JBHI.2022.3203560.
    [4] 余永程, 楊華榮, 鄭江環(huán), 等. 多導睡眠呼吸監(jiān)測的應(yīng)用與效果研究[J]. 貴州醫(yī)藥, 2018, 42(3): 361–362.

    YU Yongcheng, YANG Huarong, ZHENG Jianghuan, et al. Study on the application and effect of polysomnographic sleep apnea monitoring[J]. Guizhou Medical Journal, 2018, 42(3): 361–362.
    [5] HUANG Xude, TANG Jinbu, LUO Jingchun, et al. A wearable functional near-infrared spectroscopy (fNIRS) system for obstructive sleep apnea assessment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1837–1846. doi: 10.1109/TNSRE.2023.3260303.
    [6] NGUYEN P, ZHANG Xinyu, HALBOWER A, et al. Continuous and fine-grained breathing volume monitoring from afar using wireless signals[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524402.
    [7] ADIB F, MAO Hongzi, KABELAC Z, et al. Smart homes that monitor breathing and heart rate[C]. The 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 2015: 837–846. doi: 10.1145/2702123.2702200.
    [8] HOU Yuxiao, WANG Yawen, and ZHENG Yuanqing. TagBreathe: Monitor breathing with commodity RFID systems[C]. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, USA, 2017: 404–413. doi: 10.1109/ICDCS.2017.76.
    [9] ABDELNASSER H, HARRAS K A, and YOUSSEF M. UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator[C]. The 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, China, 2015: 277–286. doi: 10.1145/2746285.2755969.
    [10] ZHAO Zhe, LIU Ruiqi, and LI Junqiang. Integrated sensing and communication based breath monitoring using 5G network[C]. 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 2023: 43–47. doi: 10.1109/IWCMC58020.2023.10182512.
    [11] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [12] KIM K, KIM J, and JOUNG J. A survey on system configurations of integrated sensing and communication (ISAC) systems[C]. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 2022: 1176–1178. doi: 10.1109/ICTC55196.2022.9952602.
    [13] YANG Xiaolong, CAO Ruoyu, ZHOU Mu, et al. Temporal-frequency attention-based human activity recognition using commercial WiFi devices[J]. IEEE Access, 2020, 8: 137758–137769. doi: 10.1109/ACCESS.2020.3012021.
    [14] YANG Runming, YANG Xiaolong, WANG Jiacheng, et al. Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal, 2022, 22(6): 4940–4950. doi: 10.1109/JSEN.2021.3067144.
    [15] YANG Xiaolong, LI Quanchen, ZHOU Mu, et al. Phase-calibration-based 3-D beamspace matrix pencil algorithm for indoor passive positioning and tracking[J]. IEEE Sensors Journal, 2023, 23(17): 19670–19683. doi: 10.1109/JSEN.2023.3295370.
    [16] LIU Xuefeng, CAO Jiannong, TANG Shaojie, et al. Wi-sleep: Contactless sleep monitoring via WiFi signals[C]. 2014 IEEE Real-Time Systems Symposium, Rome, Italy, 2014: 346–355. doi: 10.1109/RTSS.2014.30.
    [17] LIU Jian, WANG Yan, CHEN Yingying, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]. Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, China, 2015: 267–276. doi: 10.1145/2746285.2746303.
    [18] ZENG Youwei, WU Dan, GAO Ruiyang, et al. FullBreathe: Full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 148. doi: 10.1145/3264958.
    [19] ZENG Youwei, WU Dan, XIONG Jie, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 121. doi: 10.1145/3351279.
    [20] YU Xin, YANG Xiaolong, ZHOU Mu, et al. Wi-breath: Monitoring sleep state with Wi-Fi devices and estimating respiratory rate[C]. The 9th International Conference on Communications, Signal Processing, and Systems, Singapore, 2021: 839–842. doi: 10.1007/978-981-15-8411-4_111.
    [21] WANG Hao, ZHANG Daqing, MA Junyi, et al. Human respiration detection with commodity WiFi devices: Do user location and body orientation matter?[C]. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 25–36. doi: 10.1145/2971648.2971744.
    [22] WANG Wei, LIU A X, SHAHZAD M, et al. Device-free human activity recognition using commercial WiFi devices[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(5): 1118–1131. doi: 10.1109/JSAC.2017.2679658.
    [23] YANG Jieming, LIU Yanming, LIU Zhiying, et al. A framework for human activity recognition based on WiFi CSI signal enhancement[J]. International Journal of Antennas and Propagation, 2021, 2021: 6654752. doi: 10.1155/2021/6654752.
    [24] LI Xiang, LI Shengjie, ZHANG Daqing, et al. Dynamic-MUSIC: Accurate device-free indoor localization[C]. The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 196–207. doi: 10.1145/2971648.2971665.
    [25] HALPERIN D, HU Wenjun, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53. doi: 10.1145/1925861.1925870.
    [26] WU Dan, ZHANG Daqing, XU Chenren, et al. WiDir: Walking direction estimation using wireless signals[C]. The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 351–362. doi: 10.1145/2971648.2971658.
    [27] YUE Shichao, HE Hao, WANG Hao, et al. Extracting multi-person respiration from entangled RF signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(2): 86. doi: 10.1145/3214289.
    [28] 陶凱, 吳定會. 基于VMD-JAYA-LSSVM的短期風電功率預測[J]. 控制工程, 2021, 28(6): 1143–1149. doi: 10.14107/j.cnki.kzgc.20190288.

    TAO Kai and WU Dinghui. Short-term wind power prediction based on VMD-JAYA-LSSVM[J]. Control Engineering of China, 2021, 28(6): 1143–1149. doi: 10.14107/j.cnki.kzgc.20190288.
    [29] ZHUO Hongyang, WU Xianda, ZHONG Qinghua, et al. Position-free breath detection during sleep via commodity WiFi[J]. IEEE Sensors Journal, 2023, 23(20): 24874–24884. doi: 10.1109/JSEN.2023.3309839.
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數(shù):  217
  • HTML全文瀏覽量:  55
  • PDF下載量:  38
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-12-11
  • 網(wǎng)絡(luò)出版日期:  2024-12-17

目錄

    /

    返回文章
    返回