一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

MIMO雷達通信一體化:波束圖增益最大化波束成形設計

張若愚 任紅 陳光毅 林志 吳文

張若愚, 任紅, 陳光毅, 林志, 吳文. MIMO雷達通信一體化:波束圖增益最大化波束成形設計[J]. 電子與信息學報. doi: 10.11999/JEIT240631
引用本文: 張若愚, 任紅, 陳光毅, 林志, 吳文. MIMO雷達通信一體化:波束圖增益最大化波束成形設計[J]. 電子與信息學報. doi: 10.11999/JEIT240631
ZHANG Ruoyu, REN Hong, CHEN Guangyi, LIN Zhi, WU Wen. MIMO Dual-functional Radar-communication: Beampattern Gain Maximization Beamforming Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240631
Citation: ZHANG Ruoyu, REN Hong, CHEN Guangyi, LIN Zhi, WU Wen. MIMO Dual-functional Radar-communication: Beampattern Gain Maximization Beamforming Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240631

MIMO雷達通信一體化:波束圖增益最大化波束成形設計

doi: 10.11999/JEIT240631
基金項目: 國家自然科學基金(62201266, 62201592, 62471477),江蘇省自然科學基金(BK20210335)
詳細信息
    作者簡介:

    張若愚:男,副研究員,研究方向為MIMO雷達通信一體化

    任紅:女,碩士生,研究方向為雷達通信一體化

    陳光毅:男,博士生,研究方向為雷達通信一體化混合波束成形

    林志:男,副教授,研究方向為陣列信號處理、空天地一體化通信網(wǎng)絡

    吳文:男,研究員,研究方向為毫米波近程探測理論與技術(shù)

    通訊作者:

    吳文 wuwen@njust.edu.cn

  • 中圖分類號: TN929.5

MIMO Dual-functional Radar-communication: Beampattern Gain Maximization Beamforming Design

Funds: The National Nature Science Foundation of China (62201266, 62201592, 62471477), The National Nature Science Foundation of Jiangsu Province (BK20210335)
  • 摘要: 無線通信設備數(shù)量的驟增造成頻譜資源日益稀缺,通信用頻逐漸向更高頻段擴展,從而導致通信與雷達頻段出現(xiàn)越來越多的重疊,雷達通信一體化被視為解決頻譜擁擠實現(xiàn)高效共生的潛在技術(shù)。該文考慮一個多輸入多輸出(MIMO)雷達通信一體化系統(tǒng),在實現(xiàn)目標探測的同時進行多用戶通信。首先,在滿足多用戶信干噪比和總功率約束的條件下,最大化目標方向的波束圖增益。然后,針對一體化發(fā)射波束成形設計問題,提出基于半正定松弛(SDR)和優(yōu)化最小化(MM)的兩種波束成形設計方案,求解得到發(fā)射波束成形矢量。最后,仿真結(jié)果表明基于MM的方案復雜度更低,并且能夠?qū)崿F(xiàn)與基于SDR的方案幾乎相同的波束圖增益。此外,隨著發(fā)射天線數(shù)量的增加,基于MM的方案相比于基于SDR的方案復雜度的降低程度變得更為顯著。
  • 圖  1  MIMO雷達通信一體化系統(tǒng)

    圖  2  波束圖增益隨迭代次數(shù)的收斂曲線圖

    圖  3  不同發(fā)射天線數(shù)下單次CVX的運行時間對比圖

    圖  4  不同發(fā)射天線數(shù)下的波束圖增益隨SINR閾值變化曲線

    圖  5  ${N_t} = 8$的波束圖增益隨發(fā)射SNR的變化曲線

    圖  6  $\varGamma = 18\;{\text{dB}}$的波束圖增益隨發(fā)射SNR的變化曲線

    1  基于SDR的波形設計方案

     輸入:初始化${P_t}$, ${{{\boldsymbol{h}}}_k}$, ${{\boldsymbol{f}}}({\theta _0})$, ${\sigma ^2}$, $\varGamma $。
     輸出:總發(fā)射波束成形矢量$ {\bar w} $。
     步驟:
     1:使用MATLAB的CVX工具箱求解問題式(12)得到
     ${\tilde {\boldsymbol{R}}},{{\tilde {\boldsymbol{R}}}_1},{{\tilde {\boldsymbol{R}}}_2}, \cdots ,{{\tilde {\boldsymbol{R}}}_K}$;
     2:根據(jù)式(13)求解通信發(fā)射波束成形矢量$ {{\bar {\boldsymbol{w}}}_k} $;
     3:根據(jù)式(14)和式(15)求解雷達發(fā)射波束成形矩陣$ {{\bar {\boldsymbol{W}}}_r} $;
     4:將$ K $個$ {{\bar {\boldsymbol{w}}}_k} $與$ {{\bar {\boldsymbol{W}}}_r} $的各列按列堆疊得到總發(fā)射波束成形矢量$ {\bar {\boldsymbol{w}}} $。
    下載: 導出CSV

    2  基于MM的波形設計方案

     輸入:初始化${{{\boldsymbol{w}}}_0}$, ${P_t}$, ${{{\boldsymbol{h}}}_k}$, ${{\boldsymbol{f}}}({\theta _0})$, ${\sigma ^2}$, $\varGamma $, $\varepsilon $。
     輸出:總發(fā)射波束成形矩陣的向量化形式$ {\bar {\boldsymbol{w}}} $。
     步驟:
     1:$t = 0$,隨機初始化${{{\boldsymbol{w}}}_t}$;
     2:$t = t + 1$;
     3:使用MATLAB的CVX工具箱求解問題式(20)得到${{\boldsymbol{w}}}$;
     4:計算${\text{res}} = {{\left| {\mathcal{P}({\theta _0},{{\boldsymbol{w}}}) - \mathcal{P}({\theta _0},{{{\boldsymbol{w}}}_t})} \right|} \mathord{\left/ {\vphantom {{\left| {\mathcal{P}({\theta _0},{w}) - \mathcal{P}({\theta _0},{{w}_t})} \right|} {\mathcal{P}({\theta _0},{{w}_t})}}} \right. } {\mathcal{P}({\theta _0},{{{\boldsymbol{w}}}_t})}}$;
     5:若${\text{res}} \gt \varepsilon $,則${{{\boldsymbol{w}}}_t} = {{\boldsymbol{w}}}$并返回第2步;否則$ {\bar {\boldsymbol{w}}} = {{\boldsymbol{w}}} $。
    下載: 導出CSV
  • [1] IMT-2030(6G)推進組. 6G總體愿景與潛在關(guān)鍵技術(shù)白皮書[R]. 2020.

    IMT-2030(6G) Promotion Group. 6G vision and candidate technologies[R]. 2020.
    [2] 劉凡, 袁偉杰, 原進宏, 等. 雷達通信頻譜共享及一體化: 綜述與展望[J]. 雷達學報, 2021, 10(3): 467–484. doi: 10.12000/JR20113.

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
    [3] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [4] CHEN Guangyi, ZHANG Ruoyu, REN Hong, et al. Hybrid beamforming design with overlapped subarrays for massive MIMO-ISAC systems[C]. Proceedings of GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 528–533. doi: 10.1109/GLOBECOM54140.2023.10437590.
    [5] ZHOU Wenxing, ZHANG Ruoyu, CHEN Guangyi, et al. Integrated sensing and communication waveform design: A survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930–1949. doi: 10.1109/OJCOMS.2022.3215683.
    [6] 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
    [7] 張若愚, 袁偉杰, 崔原豪, 等. 面向6G的大規(guī)模MIMO通信感知一體化: 現(xiàn)狀與展望[J]. 移動通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.

    ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
    [8] ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
    [9] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
    [10] WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038.
    [11] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890.
    [12] KUMARI P, CHOI J, GONZáLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762.
    [13] CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
    [14] LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045.
    [15] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [16] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
    [17] HUA Haocheng, SONG Xianxin, FANG Yuan, et al. MIMO integrated sensing and communication with extended target: CRB-Rate tradeoff[C]. Proceedings of GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4075–4080. doi: 10.1109/GLOBECOM48099.2022.10000676.
    [18] CHEN Li, WANG Zhiqin, DU Ying, et al. Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1795–1808. doi: 10.1109/JSAC.2022.3155515.
    [19] DU Ying, LIU Yao, HAN Kaifeng, et al. Multi-user and multi-target dual-function radar-communication waveform design: Multi-fold performance tradeoffs[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 483–496. doi: 10.1109/TGCN.2023.3234275.
    [20] HUA Haocheng, XU Jie, and HAN T X. Optimal transmit beamforming for integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588–10603. doi: 10.1109/TVT.2023.3262513.
    [21] ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Tensor decomposition-based channel estimation for hybrid mmWave massive MIMO in high-mobility scenarios[J]. IEEE Transactions on Communications, 2022, 70(9): 6325–6340. doi: 10.1109/TCOMM.2022.3187780.
    [22] ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
    [23] LUO Zhiquan and YU Wei. An introduction to convex optimization for communications and signal processing[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1426–1438. doi: 10.1109/JSAC.2006.879347.
    [24] TRAN L N, HANIF M F, TOLLI A, et al. Fast converging algorithm for weighted sum rate maximization in multicell MISO downlink[J]. IEEE Signal Processing Letters, 2012, 19(12): 872–875. doi: 10.1109/LSP.2012.2223211.
    [25] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299.
    [26] MOSEK ApS. Mosek optimization toolbox for matlab[R]. 2025.
    [27] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
    [28] BEN-TAL A and NEMIROVSKI A. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898718829.
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數(shù):  102
  • HTML全文瀏覽量:  25
  • PDF下載量:  27
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-22
  • 修回日期:  2025-02-14
  • 網(wǎng)絡出版日期:  2025-02-21

目錄

    /

    返回文章
    返回