一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

可重構(gòu)智能超表面輔助的大規(guī)模機(jī)器類通信深度學(xué)習(xí)大規(guī)模MIMO信道估計(jì)

劉婷 王媛 辛元雪

劉婷, 王媛, 辛元雪. 可重構(gòu)智能超表面輔助的大規(guī)模機(jī)器類通信深度學(xué)習(xí)大規(guī)模MIMO信道估計(jì)[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
引用本文: 劉婷, 王媛, 辛元雪. 可重構(gòu)智能超表面輔助的大規(guī)模機(jī)器類通信深度學(xué)習(xí)大規(guī)模MIMO信道估計(jì)[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
Citation: LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584

可重構(gòu)智能超表面輔助的大規(guī)模機(jī)器類通信深度學(xué)習(xí)大規(guī)模MIMO信道估計(jì)

doi: 10.11999/JEIT240584
基金項(xiàng)目: 國(guó)家自然科學(xué)基金 (62101274),江蘇省自然科學(xué)基金 (BK20210640)
詳細(xì)信息
    作者簡(jiǎn)介:

    劉婷:女,講師,研究方向?yàn)槌笠?guī)模連接無(wú)線傳輸技術(shù)

    王媛:女,碩士生,研究方向?yàn)闊o(wú)線通信

    辛元雪:女,副教授,研究方向?yàn)榇笠?guī)模MIMO頻譜效率、能量效率和新型雙工技術(shù)

    通訊作者:

    劉婷 liuting@nuist.edu.cn

  • 中圖分類號(hào): TN929.5

Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication

Funds: The National Natural Science Foundation of China (62101274), The Natural Science Foundation of Jiangsu Province (BK20210640)
  • 摘要: 大規(guī)模機(jī)器類通信 (mMTC) 是第5代移動(dòng)通信系統(tǒng)的重要應(yīng)用場(chǎng)景之一,可實(shí)現(xiàn)每平方公里近百萬(wàn)級(jí)設(shè)備的連接??紤]到mMTC傳播環(huán)境的復(fù)雜性,該文引入可重構(gòu)智能超表面 (RIS) 進(jìn)行上行免授權(quán)的傳輸,由此級(jí)聯(lián)形成用戶與RIS、RIS與基站 (BS) 之間的信道鏈路,從而有效控制無(wú)線信號(hào)傳輸?shù)馁|(zhì)量。在此基礎(chǔ)上,建立Turbo譯碼消息傳遞思想下的降噪學(xué)習(xí)系統(tǒng),通過(guò)大量的訓(xùn)練數(shù)據(jù),以學(xué)習(xí)RIS輔助的級(jí)聯(lián)信道狀態(tài)信息,并對(duì)其進(jìn)行估計(jì)。此外,該文對(duì)RIS輔助的mMTC信道估計(jì)結(jié)果進(jìn)行了統(tǒng)計(jì)分析,以驗(yàn)證所提方案的準(zhǔn)確性。數(shù)值仿真結(jié)果和理論分析結(jié)果表明,該文方法優(yōu)于其他壓縮感知類的方法。
  • 圖  1  RIS輔助的mMTC上行傳輸系統(tǒng)示意圖

    圖  2  信道估計(jì)深度學(xué)習(xí)架構(gòu)圖

    圖  3  聯(lián)合GAN和DnCNN的降噪模塊圖

    圖  4  不同系統(tǒng)模型下的信道估計(jì)性能比較,$ M = 32 $

    圖  5  RIS輔助系統(tǒng)的MSE性能比較,$ M = 64 $

    圖  6  不同RIS單元數(shù)量下的MSE性能比較,$ M = 64 $

    圖  7  不同學(xué)習(xí)層數(shù)下的MSE性能比較

  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2] IMT-2030 (6G) 推進(jìn)組. 6G無(wú)線系統(tǒng)設(shè)計(jì)原則和典型特征白皮書[R]. 2023.

    IMT-2030 (6G) Promotion Group. White paper on 6G wireless system design principles and typical characteristics[R]. 2023.
    [3] 尤肖虎, 許威, 相紅, 等. 6G發(fā)展趨勢(shì)與候選關(guān)鍵技術(shù)分析[J]. 信息通信技術(shù), 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.

    YOU Xiaohu, XU Wei, XIANG Hong, et al. 6G network evolution and key candidate technologies[J]. Information and Communications Technologies, 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.
    [4] ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi: 10.1109/COMST.2021.3123267.
    [5] LIU Ting, JIN Shi, WEN Chaokai, et al. Generalized channel estimation and user detection for massive connectivity with mixed-ADC massive MIMO[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3236–3250. doi: 10.1109/TWC.2019.2912370.
    [6] 朱秋明, 倪浩然, 華博宇, 等. 無(wú)人機(jī)毫米波信道測(cè)量與建模研究綜述[J]. 移動(dòng)通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [7] 張?jiān)阼? 江浩. 智能超表面使能無(wú)人機(jī)高能效通信信道建模與傳輸機(jī)理分析[J]. 電子學(xué)報(bào), 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [8] PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [9] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055.
    [10] NGUYEN N T, NGUYEN V D, NGUYEN H V, et al. Spectral efficiency analysis of hybrid relay-reflecting intelligent surface-assisted cell-free massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3397–3416. doi: 10.1109/TWC.2022.3217828.
    [11] HE Jinglian, YU Kaiqiang, SHI Yuanming, et al. Reconfigurable intelligent surface assisted massive MIMO with antenna selection[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4769–4783. doi: 10.1109/TWC.2021.3133272.
    [12] BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [13] LIESEGANG S, ZAPPONE A, MU?OZ O, et al. Rate optimization for RIS-aided mMTC networks in the finite blocklength regime[J]. IEEE Communications Letters, 2023, 27(3): 921–925. doi: 10.1109/LCOMM.2022.3231717.
    [14] CHEN Zhen, HUANG Lei, XIA Shuqiang, et al. Parallel channel estimation for RIS-assisted internet of things[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9762–9773. doi: 10.1109/TITS.2024.3364248.
    [15] CHEN Jianqiao, MA Nan, XU Xiaodong, et al. Efficient two-level block-structured sparse Bayesian learning-based channel estimation for RIS-assisted MIMO IoT systems[J]. IEEE Internet of Things Journal, 2024, 11(14): 24933–24947. doi: 10.1109/JIOT.2024.3387885.
    [16] HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039.
    [17] SAGIR B, AYDIN E, and ILHAN H. Deep-learning-assisted IoT-based RIS for cooperative communications[J]. IEEE Internet of Things Journal, 2023, 10(12): 10471–10483. doi: 10.1109/JIOT.2023.3239818.
    [18] NGUYEN C, HOANG T M, and CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1: 43–60. doi: 10.1109/TMLCN.2023.3278232.
    [19] BAI Yanna, CHEN Wei, AI Bo, et al. Prior information aided deep learning method for grant-free NOMA in mMTC[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 112–126. doi: 10.1109/JSAC.2021.3126071.
  • 加載中
圖(7)
計(jì)量
  • 文章訪問(wèn)數(shù):  343
  • HTML全文瀏覽量:  108
  • PDF下載量:  81
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-09-14
  • 網(wǎng)絡(luò)出版日期:  2024-09-24
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回