一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

上下文感知多感受野融合網(wǎng)絡(luò)的定向遙感目標(biāo)檢測(cè)

姚婷婷 肇恒鑫 馮子豪 胡青

姚婷婷, 肇恒鑫, 馮子豪, 胡青. 上下文感知多感受野融合網(wǎng)絡(luò)的定向遙感目標(biāo)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 233-243. doi: 10.11999/JEIT240560
引用本文: 姚婷婷, 肇恒鑫, 馮子豪, 胡青. 上下文感知多感受野融合網(wǎng)絡(luò)的定向遙感目標(biāo)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 233-243. doi: 10.11999/JEIT240560
YAO Tingting, ZHAO Hengxin, FENG Zihao, HU Qing. A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2025, 47(1): 233-243. doi: 10.11999/JEIT240560
Citation: YAO Tingting, ZHAO Hengxin, FENG Zihao, HU Qing. A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2025, 47(1): 233-243. doi: 10.11999/JEIT240560

上下文感知多感受野融合網(wǎng)絡(luò)的定向遙感目標(biāo)檢測(cè)

doi: 10.11999/JEIT240560
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62001078),中央高?;究蒲袠I(yè)務(wù)費(fèi) (3132023249)
詳細(xì)信息
    作者簡(jiǎn)介:

    姚婷婷:女,副教授,研究方向?yàn)橛?jì)算機(jī)視覺與圖像處理等

    肇恒鑫:男,碩士生,研究方向?yàn)檫b感目標(biāo)檢測(cè)

    馮子豪:男,碩士生,研究方向?yàn)閳D像增強(qiáng)處理

    胡青:男,教授,研究方向?yàn)楹J滦畔鬏?、自?dòng)識(shí)別系統(tǒng)等

    通訊作者:

    姚婷婷 ytt1030@dlmu.edu.cn

  • 中圖分類號(hào): TN911.73; TP751.1

A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images

Funds: The National Natural Science Foundation of China (62001078), The Fundamental Research Funds for the Central Universities (3132023249)
  • 摘要: 以廣距鳥瞰視角拍攝獲取的遙感圖像通常具有目標(biāo)種類多、尺度變化大以及背景信息豐富等特點(diǎn),為目標(biāo)檢測(cè)任務(wù)帶來巨大挑戰(zhàn)。針對(duì)遙感圖像成像特點(diǎn),該文設(shè)計(jì)一種上下文感知多感受野融合網(wǎng)絡(luò),通過充分挖掘深度網(wǎng)絡(luò)中遙感圖像在不同尺寸特征描述下所包含的上下文關(guān)聯(lián)信息,提高圖像特征描述力,進(jìn)而提升遙感目標(biāo)檢測(cè)精度。首先,在特征金字塔前4層網(wǎng)絡(luò)中構(gòu)建了感受野擴(kuò)張模塊,通過擴(kuò)大網(wǎng)絡(luò)在不同尺度特征圖上的感受野范圍,增強(qiáng)網(wǎng)絡(luò)對(duì)不同尺度遙感目標(biāo)的感知能力;進(jìn)一步,構(gòu)建了高層特征聚合模塊,通過將特征金字塔網(wǎng)絡(luò)中高層語義信息聚合到低層特征中,從而將特征圖中所包含的多尺度上下文信息進(jìn)行有效融合;最后,在雙階段定向目標(biāo)檢測(cè)框架下設(shè)計(jì)了特征細(xì)化區(qū)域建議網(wǎng)絡(luò)。通過對(duì)一階段提案進(jìn)行精細(xì)化處理,提升提案準(zhǔn)確性,進(jìn)而提高二階段興趣區(qū)域?qū)R網(wǎng)絡(luò)得到的不同成像方向下的遙感目標(biāo)檢測(cè)性能。在公測(cè)數(shù)據(jù)集DIOR-R和HRSC2016上的定性和定量的對(duì)比實(shí)驗(yàn)結(jié)果證明,所提方法對(duì)不同種類和尺度大小的遙感目標(biāo)均能實(shí)現(xiàn)更加準(zhǔn)確的檢測(cè)。
  • 圖  1  上下文感知多感受野融合網(wǎng)絡(luò)架構(gòu)

    圖  2  感受野擴(kuò)張模塊

    圖  3  大核選擇卷積注意力子模塊

    圖  4  移位滑窗自注意力模塊

    圖  5  高層特征聚合模塊

    圖  6  特征細(xì)化區(qū)域建議網(wǎng)絡(luò)

    圖  7  不同方法在DIOR-R和HRSC2016數(shù)據(jù)集上檢測(cè)結(jié)果對(duì)比

    表  1  不同算法在DOIR-R數(shù)據(jù)集上的定量對(duì)比(%)

    方法 Gliding Vertex[18] Rotated Faster RCNN[3] S2ANet[19] R3Det[20] EDA[21] QPDet[22] ABFL[23] 本文方法
    APL 62.67 62.92 62.32 62.60 63.01 71.52 62.04 72.00
    APO 38.56 39.94 43.38 42.98 36.87 42.01 42.54 49.49
    BF 71.94 71.95 71.90 71.42 72.05 77.99 76.40 72.11
    BC 81.20 81.48 81.32 81.42 81.42 81.47 85.33 81.60
    BR 37.73 36.71 40.24 38.45 40.22 40.80 37.75 45.81
    CH 72.48 72.54 75.37 72.63 72.26 72.64 74.34 80.51
    ESA 78.62 77.35 78.17 78.81 78.04 77.36 77.97 80.67
    ETS 69.04 68.75 69.63 67.60 69.98 66.69 69.29 70.14
    DAM 22.81 25.31 26.47 27.51 28.63 31.84 26.78 29.94
    GF 77.89 76.36 73.75 70.91 65.38 69.16 73.88 78.16
    GTF 82.13 76.57 78.41 77.11 82.35 82.24 77.78 83.10
    HA 46.22 45.39 41.82 39.69 44.86 42.78 43.15 46.61
    OP 54.76 50.10 56.34 54.94 55.58 54.67 54.13 58.66
    SH 81.03 80.93 80.99 80.26 81.03 80.90 84.97 81.19
    STA 74.88 75.27 63.25 72.88 73.99 77.15 67.88 74.59
    STO 62.54 62.12 69.72 61.30 62.57 62.73 70.04 62.46
    TC 81.41 81.46 81.47 81.51 81.49 81.56 81.39 81.54
    TS 54.25 50.25 52.40 55.72 59.83 47.77 54.63 55.88
    VE 43.22 42.81 47.64 44.81 43.29 47.39 45.35 43.55
    WM 65.13 63.02 64.42 64.15 64.79 64.12 65.01 66.11
    $ {\text{A}}{{\text{P}}_{50}} $ 62.91 62.06 62.95 62.34 62.88 63.64 63.53 65.71
    $ {\text{A}}{{\text{P}}_{75}} $ 40.00 39.55 35.85 38.82 40.02 36.79 42.68 46.72
    $ {\text{A}}{{\text{P}}_{50:95}} $ 38.34 38.22 36.25 37.84 38.36 37.51 40.94 43.17
    下載: 導(dǎo)出CSV

    表  2  不同算法在HRSC2016數(shù)據(jù)集上的定量對(duì)比(%)

    方法 Backbone mAP(07) mAP(12)
    Rotate Faster-RCNN[3] R-50 86.49
    Gliding Vertex[18] R-101 88.20
    S2Anet[19] R-101 90.17 95.01
    R3Det[20] R-101 89.26 96.01
    EDA[21] R-50 89.13
    QPDet[22] R-50 90.47 96.60
    ABFL[23] R-101 90.30 96.46
    DFDet[24] R-101 90.38 96.72
    本文方法 R-50 90.50 98.26
    下載: 導(dǎo)出CSV

    表  3  不同模塊消融實(shí)驗(yàn)(%)

    感受野擴(kuò)
    張模塊
    高層特征
    聚合模塊
    特征細(xì)化區(qū)
    域建議網(wǎng)絡(luò)
    AP50 AP75 AP50:95
    64.06 43.96 41.10
    64.86 46.05 42.93
    64.61 44.80 41.87
    64.17 44.68 41.69
    65.71 46.72 43.17
    下載: 導(dǎo)出CSV
  • [1] RAO Chaofan, WANG Jiabao, CHENG Gong, et al. Learning orientation-aware distances for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610911. doi: 10.1109/TGRS.2023.3278933.
    [2] XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 3520–3529. doi: 10.1109/ICCV48922.2021.00350.
    [3] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [4] YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 8232–8241. doi: 10.1109/ICCV.2019.00832.
    [5] LI Zhonghua, HOU Biao, WU Zitong, et al. FCOSR: A simple anchor-free rotated detector for aerial object detection[J]. Remote Sensing, 2023, 15(23): 5499. doi: 10.3390/rs15235499.
    [6] TIAN Yang, ZHANG Mengmeng, LI Jinyu, et al. FPNFormer: Rethink the method of processing the rotation-invariance and rotation-equivariance on arbitrary-oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5605610. doi: 10.1109/TGRS.2024.3351156.
    [7] MING Qi, MIAO Lingjuan, ZHOU Zhiqiang, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605814. doi: 10.1109/TGRS.2021.3095186.
    [8] REN Zhida, TANG Yongqiang, HE Zewen, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. doi: 10.1109/TGRS.2022.3173610.
    [9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [10] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [11] LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
    [12] LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
    [13] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [14] CHENG Gong, WANG Jiabao, LI Ke, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5625411. doi: 10.1109/TGRS.2022.3183022.
    [15] LIU Zikun, WANG Hongzhen, WENG Lubin, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1074–1078. doi: 10.1109/LGRS.2016.2565705.
    [16] ZENG Ying, CHEN Yushi, YANG Xue, et al. ARS-DETR: Aspect ratio-sensitive detection transformer for aerial oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610315. doi: 10.1109/TGRS.2024.3364713.
    [17] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
    [18] XU Yongchao, FU Mingtao, WANG Qimeng, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452–1459. doi: 10.1109/TPAMI.2020.2974745.
    [19] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. doi: 10.1109/TGRS.2021.3062048.
    [20] YANG Xue, YAN Junchi, FENG Ziming, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[C]. Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021: 3163–3171. doi: 10.1609/aaai.v35i4.16426.
    [21] CHEN Weining, MIAO Shencheng, WANG Guangxing, et al. Recalibrating features and regression for oriented object detection[J]. Remote Sensing, 2023, 15(8): 2134. doi: 10.3390/rs15082134.
    [22] YAO Yanqing, CHENG Gong, WANG Guangxing, et al. On improving bounding box representations for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5600111. doi: 10.1109/TGRS.2022.3231340.
    [23] ZHAO Zifei and LI Shengyang. ABFL: Angular boundary discontinuity free loss for arbitrary oriented object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611411. doi: 10.1109/TGRS.2024.3368630.
    [24] XIE Xingxing, CHENG Gong, RAO Chaofan, et al. Oriented object detection via contextual dependence mining and penalty-incentive allocation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618010. doi: 10.1109/TGRS.2024.3385985.
  • 加載中
圖(7) / 表(3)
計(jì)量
  • 文章訪問數(shù):  237
  • HTML全文瀏覽量:  67
  • PDF下載量:  46
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-12-17
  • 網(wǎng)絡(luò)出版日期:  2025-01-06
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回