一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

動(dòng)態(tài)車輛網(wǎng)絡(luò)場景中的協(xié)同空地計(jì)算卸載和資源優(yōu)化

王俊華 羅菲 高廣鑫 李斌

王俊華, 羅菲, 高廣鑫, 李斌. 動(dòng)態(tài)車輛網(wǎng)絡(luò)場景中的協(xié)同空地計(jì)算卸載和資源優(yōu)化[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 102-115. doi: 10.11999/JEIT240464
引用本文: 王俊華, 羅菲, 高廣鑫, 李斌. 動(dòng)態(tài)車輛網(wǎng)絡(luò)場景中的協(xié)同空地計(jì)算卸載和資源優(yōu)化[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 102-115. doi: 10.11999/JEIT240464
WANG Junhua, LUO Fei, GAO Guangxin, LI Bin. Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(1): 102-115. doi: 10.11999/JEIT240464
Citation: WANG Junhua, LUO Fei, GAO Guangxin, LI Bin. Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(1): 102-115. doi: 10.11999/JEIT240464

動(dòng)態(tài)車輛網(wǎng)絡(luò)場景中的協(xié)同空地計(jì)算卸載和資源優(yōu)化

doi: 10.11999/JEIT240464
基金項(xiàng)目: 國家自然科學(xué)基金(62002166),國家社會(huì)科學(xué)基金(22BGL113)
詳細(xì)信息
    作者簡介:

    王俊華:女,副教授,研究方向?yàn)橐苿?dòng)邊緣計(jì)算、人工智能等

    羅菲:女,碩士生,研究方向?yàn)檐嚶?lián)網(wǎng)、邊緣緩存和計(jì)算卸載等

    高廣鑫:男,副教授,研究方向?yàn)樗懔W(wǎng)絡(luò)管理、智慧交通等

    李斌:男,副教授,研究方向?yàn)檫吘売?jì)算與資源優(yōu)化,深度強(qiáng)化學(xué)習(xí)算法等

    通訊作者:

    高廣鑫 gxgao@nuaa.edu.cn

  • 中圖分類號(hào): TN929.5; TP18

Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios

Funds: The National Natural Science Foundation of China (62002166), The National Social Science Fund of China (22BGL113)
  • 摘要: 針對(duì)移動(dòng)用戶數(shù)量迅猛增長和地面基礎(chǔ)設(shè)施分布稀疏所帶來的挑戰(zhàn),該文提出一種能量收集輔助的空地協(xié)同計(jì)算卸載架構(gòu)。該架構(gòu)充分利用無人機(jī)(UAVs)的靈活機(jī)動(dòng)性和路側(cè)單元(RSUs)及基站(BS)的強(qiáng)大算力,實(shí)現(xiàn)了任務(wù)計(jì)算的動(dòng)態(tài)實(shí)時(shí)分發(fā)。特別地,無人機(jī)通過能量收集來維持其持續(xù)運(yùn)行和穩(wěn)定的計(jì)算性能??紤]到無人機(jī)與地面車輛的高動(dòng)態(tài)性、車輛計(jì)算任務(wù)的隨機(jī)性,以及信道模型的時(shí)變性,提出一個(gè)能耗受限的長期優(yōu)化問題,旨在從全局角度有效降低整個(gè)系統(tǒng)的平均時(shí)延。為了解決這一復(fù)雜的混合整數(shù)規(guī)劃(MIP)問題,提出一種基于改進(jìn)演員-評(píng)論家(Actor-Critic)強(qiáng)化學(xué)習(xí)算法的計(jì)算卸載策略(IACA)。該算法運(yùn)用李雅普諾夫優(yōu)化技術(shù),將長期系統(tǒng)時(shí)延優(yōu)化問題分解為一系列易于處理的幀級(jí)子問題。然后,利用遺傳算法計(jì)算目標(biāo)Q值替代目標(biāo)神經(jīng)網(wǎng)絡(luò)輸出以調(diào)整強(qiáng)化學(xué)習(xí)進(jìn)化方向,有效避免了算法陷入局部最優(yōu),從而實(shí)現(xiàn)動(dòng)態(tài)車輛網(wǎng)絡(luò)中的高效卸載和資源優(yōu)化。通過綜合仿真驗(yàn)證了所提計(jì)算卸載架構(gòu)和算法的可行性和優(yōu)越性。
  • 圖  1  能量收集輔助動(dòng)態(tài)車輛網(wǎng)絡(luò)中的空地協(xié)同計(jì)算卸載

    圖  2  IACA算法架構(gòu)圖

    圖  3  不同時(shí)隙數(shù)下的訓(xùn)練損失和獎(jiǎng)勵(lì)

    圖  4  不同時(shí)隙數(shù)對(duì)系統(tǒng)性能的影響

    圖  5  不同任務(wù)大小對(duì)系統(tǒng)性能的影響

    圖  6  不同李雅普諾夫控制參數(shù)V對(duì)系統(tǒng)性能的影響

    圖  7  不同UAV能耗閾值和數(shù)量對(duì)系統(tǒng)平均時(shí)延的影響

    1  基于改進(jìn)Actor-Critic強(qiáng)化學(xué)習(xí)算法的計(jì)算卸載策略

     輸入:系統(tǒng)狀態(tài) $ {\boldsymbol{S}}_{t} $,參數(shù) $ V $,獎(jiǎng)勵(lì)折扣因子 $ \gamma $,Actor 網(wǎng)絡(luò)結(jié)構(gòu),Critic 網(wǎng)絡(luò)結(jié)構(gòu)
     輸出:卸載決策$ {\hat{\boldsymbol{\alpha }}}^{t} $,每個(gè)時(shí)間幀對(duì)應(yīng)的最優(yōu)計(jì)算頻率分配$ {\hat{\boldsymbol{f}}}^{t} $
     (1) 初始化經(jīng)驗(yàn)池, 網(wǎng)絡(luò)模型參數(shù)以及系統(tǒng)環(huán)境參數(shù);
     (2) for episode $ \leftarrow \mathrm{1,2},\cdots $ do
     (3)  獲取當(dāng)前環(huán)境系統(tǒng)初始狀態(tài) $ {\boldsymbol{S}}_{0} $
     (4)  Actor 生成一個(gè)0~1的松馳動(dòng)作 $ {\hat{\alpha }}_{u,s}^{t},{\hat{f}}_{u}^{t} $;
     (5)  將$ {\hat{\alpha }}_{u,s}^{t} $和$ {\hat{f}}_{u}^{t} $量化為二進(jìn)制動(dòng)作$ {\hat{\boldsymbol{\alpha }}}^{t} $和滿足約束條件的計(jì)算頻率$ {\hat{\boldsymbol{f}}}^{t} $,得到動(dòng)作$ {\boldsymbol{A}}_{t} $;
     (6)  基于動(dòng)作 $ {\boldsymbol{A}}_{t} $ 得到下一個(gè)的狀態(tài) $ {\boldsymbol{S}}_{t+1} $ 和當(dāng)前獎(jiǎng)勵(lì) $ {R}_{t} $;
     (7)  改進(jìn)遺傳算法生成卸載決策$ {\bar{\alpha }}_{u,s}^{t}, $和獎(jiǎng)勵(lì) $ {{R}}'_{t} $;
     (8)  if $ {{R}}'_{t} > {R}_{t} $ then
     (9)   $ {\boldsymbol{A}}_{t}=\left\{{\bar{\alpha }}_{u,s}^{t},{f}_{u}^{t}\right\} $
     (10) $ {R}_{t}={{R}}'_{t} $
     (11) 將 $ \left\{{\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t},{R}_{t},{\boldsymbol{S}}_{t+1}\right\} $ 存儲(chǔ)至緩沖池中;
     (12) for Agent do
     (13) 從經(jīng)驗(yàn)池中隨機(jī)采樣批量數(shù)據(jù) $ \left\{{\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t},{R}_{t},{\boldsymbol{S}}_{t+1}\right\} $;
     (14) 通過 $ {\lambda }_{t}={R}_{t}+\gamma Q\left({\boldsymbol{S}}_{t+1},{\boldsymbol{A}}_{t+1}:{\omega }^{{{'}}}\right) $ 計(jì)算 TD 目標(biāo)值;
     (15) 計(jì)算損失值 $ \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}\left(\omega \right)=\dfrac{1}{2}{\left[Q\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}:\omega \right)-{\lambda }_{t}\right]}^{2} $,更新 Critic 網(wǎng)絡(luò);
     (16) 計(jì)算損失值 $ \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}\left(\theta \right)=\nabla_{\mathrm{\theta }}\mathrm{l}\mathrm{n}{\pi }_{\theta }\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}\right)Q\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}:\omega \right) $ ,采用策略梯度更新 Actor 網(wǎng)絡(luò);
     (17) for $ t=\mathrm{1,2},\cdots ,T $ do
     (18) 獲取時(shí)隙t 的環(huán)境狀態(tài);
     (19) 利用訓(xùn)練好的 Actor-Critic 模型,得到時(shí)隙t的最優(yōu)卸載決策$ {\hat{\boldsymbol{\alpha }}}^{t} $和計(jì)算頻率$ {\hat{\boldsymbol{f}}}^{t} $;
    下載: 導(dǎo)出CSV

    表  1  實(shí)驗(yàn)參數(shù)表

    參數(shù) 參數(shù)
    UAV計(jì)算能效系數(shù) $ {\kappa }_{u} $ 10–28 UAV飛行速度 $ {v}_{u}^{t} $ 25 m/s
    可用帶寬$ {B}_{u,v} $ 3 MHz 可用帶寬 $ {B}_{u,r} $ 1 MHz
    可用帶寬 $ {B}_{u,0} $ 2.5 MHz 獎(jiǎng)勵(lì)折扣因子 $ \gamma $ 0.95
    模型訓(xùn)練優(yōu)化器 AdamOptimizer 批處理數(shù)量 512
    Actor 學(xué)習(xí)率 0.001 Critic 學(xué)習(xí)率 0.002
    天線增益$ {A}_q7j3ldu95 $ 3 載波頻率$ {F}_{u,r} $ 915 MHz
    路徑損耗$ {g}_{0} $ –40 dB 參考距離 $ q7j3ldu95_{0} $ 1 m
    下載: 導(dǎo)出CSV
  • [1] ZHANG Haibo, LIU Xiangyu, XU Yongjun, et al. Partial offloading and resource allocation for MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1276–1288. doi: 10.1109/TVT.2023.3306939.
    [2] LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
    [3] YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898.
    [4] HU Jinna, CHEN Chen, CAI Lin, et al. UAV-assisted vehicular edge computing for the 6G internet of vehicles: Architecture, intelligence, and challenges[J]. IEEE Communications Standards Magazine, 2021, 5(2): 12–18. doi: 10.1109/MCOMSTD.001.2000017.
    [5] WANG Junhua, WANG Ling, ZHU Kun, et al. Lyapunov-based joint flight trajectory and computation offloading optimization for UAV-assisted vehicular networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 22243–22256. doi: 10.1109/JIOT.2024.3382242.
    [6] HE Yixin, ZHAI Daosen, ZHANG Ruonan, et al. A mobile edge computing framework for task offloading and resource allocation in UAV-assisted VANETs[C]. IEEE Conference on Computer Communications Workshop, Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484643.
    [7] DUAN Xuting, ZHOU Yukang, TIAN Daxin, et al. Weighted energy-efficiency maximization for a UAV-assisted multiplatoon mobile-edge computing system[J]. IEEE Internet of Things Journal, 2022, 9(19): 18208–18220. doi: 10.1109/JIOT.2022.3155608.
    [8] ZHAO Nan, YE Zhiyang, PEI Yiyang, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949–6960. doi: 10.1109/TWC.2022.3153316.
    [9] ZHANG Liang, JABBARI B, and ANSARI N. Deep reinforcement learning driven UAV-assisted edge computing[J]. IEEE Internet of Things Journal, 2022, 9(24): 25449–25459. doi: 10.1109/JIOT.2022.3196842.
    [10] YAN Ming, XIONG Rui, WANG Yan, et al. Edge computing task offloading optimization for a UAV-assisted internet of vehicles via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5647–5658. doi: 10.1109/TVT.2023.3331363.
    [11] WU Zhiwei, YANG Zilin, YANG Chao, et al. Joint deployment and trajectory optimization in UAV-assisted vehicular edge computing networks[J]. Journal of Communications and Networks, 2022, 24(1): 47–58. doi: 10.23919/JCN.2021.000026.
    [12] YANG Chao, LIU Baichuan, LI Haoyu, et al. Learning based channel allocation and task offloading in temporary UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9884–9895. doi: 10.1109/TVT.2022.3177664.
    [13] PENG Haixia and SHEN Xuemin. Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 131–141. doi: 10.1109/JSAC.2020.3036962.
    [14] LIU Yinan, YANG Chao, CHEN Xin, et al. Joint hybrid caching and replacement scheme for UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 866–878. doi: 10.1109/TIV.2023.3323217.
    [15] YAN Junjie, ZHAO Xiaohui, and LI Zan. Deep-reinforcement-learning-based computation offloading in UAV-assisted vehicular edge computing networks[J]. IEEE Internet of Things Journal, 2024, 11(11): 19882–19897. doi: 10.1109/JIOT.2024.3370553.
    [16] ZHANG Wenqian, Lü Zilong, GE Mengxia, et al. UAV-assisted vehicular edge computing system: Min-max fair offloading and position optimization[J]. IEEE Transactions on Consumer Electronics, 2024. doi: 10.1109/TCE.2024.3426513.
    [17] HAN Zihao, ZHOU Ting, XU Tianheng, et al. Joint user association and deployment optimization for delay-minimized UAV-aided MEC networks[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1791–1795. doi: 10.1109/LWC.2023.3294749.
    [18] FIROZJAE H M, MOGHADDAM J Z, and ARDEBILIPOUR M. A joint trajectory and energy harvesting method for an UAV enabled disaster response network[C]. 13th International Conference on Information and Knowledge Technology, Karaj, Iran, 2022: 1–5. doi: 10.1109/IKT57960.2022.10039000.
    [19] ZHANG Ning, LIU Juan, XIE Lingfu, et al. A deep reinforcement learning approach to energy-harvesting UAV-aided data collection[C]. 2020 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2020: 93–98. doi: 10.1109/WCSP49889.2020.9299806.
    [20] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/TWC.2022.3184953.
    [21] CHANG Zheng, LIU Liqing, GUO Xijuan, et al. Dynamic resource allocation and computation offloading for IoT fog computing system[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3348–3357. doi: 10.1109/TII.2020.2978946.
    [22] DAI Xingxia, XIAO Zhu, JIANG Hongbo, et al. UAV-assisted task offloading in vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2520–2534. doi: 10.1109/TMC.2023.3259394.
    [23] WANG Feng, XU Jie, WANG Xin, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784–1797. doi: 10.1109/TWC.2017.2785305.
    [24] YUE Yuchen and WANG Junhua. Lyapunov-based dynamic computation offloading optimization in heterogeneous vehicular networks[C]. 2022 IEEE International Symposium on Product Compliance Engineering - Asia, Guangzhou, China, 2022: 1–6. doi: 10.1109/ISPCE-ASIA57917.2022.9971076.
    [25] TREIBER M and KESTING A. Traffic Flow Dynamics: Data, Models and Simulation[M]. Berlin: Springer, 2013. doi: 10.1007/978-3-642-32460-4.
    [26] HUANG Liang, BI Suzhi, and ZHANG Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581–2593. doi: 10.1109/TMC.2019.2928811.
    [27] DAGANZO C F. Traffic flow theory[M]. DAGANZO C F. Fundamentals of Transportation and Traffic Operations. Oxford: Pergamon, 1997: 66–160. doi: 10.1108/ 9780585475301-004.
    [28] SHI Weisen, LI Junling, CHENG Nan, et al. Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8145–8158. doi: 10.1109/TVT.2019.2925629.
    [29] SUN Yukun and ZHANG Xing. A2C learning for tasks segmentation with cooperative computing in edge computing networks[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 2236–2241. doi: 10.1109/GLOBECOM48099.2022.10000948.
  • 加載中
圖(7) / 表(2)
計(jì)量
  • 文章訪問數(shù):  182
  • HTML全文瀏覽量:  52
  • PDF下載量:  33
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-12-18
  • 網(wǎng)絡(luò)出版日期:  2024-12-23
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回