一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

智能反射面輔助的環(huán)境反向散射通信系統(tǒng)信道估計(jì)算法研究

徐勇軍 邱友靜 張海波

徐勇軍, 邱友靜, 張海波. 智能反射面輔助的環(huán)境反向散射通信系統(tǒng)信道估計(jì)算法研究[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 75-83. doi: 10.11999/JEIT240395
引用本文: 徐勇軍, 邱友靜, 張海波. 智能反射面輔助的環(huán)境反向散射通信系統(tǒng)信道估計(jì)算法研究[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 75-83. doi: 10.11999/JEIT240395
XU Yongjun, QIU Youjing, ZHANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 75-83. doi: 10.11999/JEIT240395
Citation: XU Yongjun, QIU Youjing, ZHANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 75-83. doi: 10.11999/JEIT240395

智能反射面輔助的環(huán)境反向散射通信系統(tǒng)信道估計(jì)算法研究

doi: 10.11999/JEIT240395
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62271094, U23A20279),重慶市自然科學(xué)基金重點(diǎn)項(xiàng)目(CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079),重慶市教委科技重點(diǎn)項(xiàng)目(KJZD-K202200601)
詳細(xì)信息
    作者簡(jiǎn)介:

    徐勇軍:男,教授,博士生導(dǎo)師,研究方向?yàn)榉聪蛏⑸渫ㄐ?、智能反射面、信道估?jì)、資源分配等

    邱友靜:女,碩士生,研究方向?yàn)榉聪蛏⑸渫ㄐ?、智能反射面、信道估?jì)等

    張海波:男,副教授,碩士生導(dǎo)師,研究方向?yàn)橘Y源分配、反向散射通信、車聯(lián)網(wǎng)等

    通訊作者:

    徐勇軍 xuyj@cqupt.edu.cn

  • 中圖分類號(hào): TN929.5

Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems

Funds: The National Natural Science Foundation of China (62271094, U23A20279), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601)
  • 摘要: 環(huán)境反向散射通信(AmBC)是一種新型的低功耗通信技術(shù),它能利用周圍環(huán)境中的射頻(RF)信號(hào)源實(shí)現(xiàn)無(wú)源信息傳輸,但由于其存在雙重衰落、障礙物阻擋等問(wèn)題,導(dǎo)致反射鏈路信號(hào)強(qiáng)度弱。為此,該文將智能反射面(IRS)引入到AmBC系統(tǒng)中用以增強(qiáng)反射鏈路增益。然而,IRS與標(biāo)簽均為無(wú)源器件使得信道估計(jì)極具挑戰(zhàn)性。為此,該文提出了一種IRS輔助的AmBC系統(tǒng)信道估計(jì)方案。首先,將信道分解為多個(gè)子信道,其中,反射鏈路的每個(gè)子信道對(duì)應(yīng)一個(gè)IRS反射單元。然后,將最小二乘(LS)法作為估計(jì)準(zhǔn)則,以最小化均方誤差(MSE)為目標(biāo),探索了IRS反射模式與信道估計(jì)的聯(lián)合設(shè)計(jì)。仿真結(jié)果表明,該信道估計(jì)方案具有良好的估計(jì)性能。
  • 圖  1  IRS輔助的AmBC系統(tǒng)

    圖  2  直連信道均方誤差隨信噪比變化曲線

    圖  3  級(jí)聯(lián)信道均方誤差隨信噪比變化曲線

    圖  4  直連信道均方誤差隨反射單元數(shù)變化曲線

    圖  5  級(jí)聯(lián)信道均方誤差隨反射單元數(shù)變化曲線

    圖  6  直連信道均方誤差隨反射單元數(shù)變化曲線

    圖  7  級(jí)聯(lián)信道均方誤差隨反射單元數(shù)變化曲線

  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2] 張曉茜, 徐勇軍. 面向零功耗物聯(lián)網(wǎng)的反向散射通信綜述[J]. 通信學(xué)報(bào), 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [3] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4] GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [5] LE A T, NGUYEN T N, TU L T, et al. Performance analysis of RIS-assisted ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2024, 13(3): 791–795. doi: 10.1109/LWC.2023.3344113.
    [6] 張曉茜, 徐勇軍, 吳翠先, 等. 智能反射面增強(qiáng)的全雙工環(huán)境反向散射通信系統(tǒng)波束成形算法[J]. 電子與信息學(xué)報(bào), 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [7] YANG Hancheng, DING Haiyang, CAO Kunrui, et al. A RIS-segmented symbiotic ambient backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 812–825. doi: 10.1109/TVT.2023.3306037.
    [8] MA Shuo, WANG Gongpu, FAN Rongfei, et al. Blind channel estimation for ambient backscatter communication systems[J]. IEEE Communications Letters, 2018, 22(6): 1296–1299. doi: 10.1109/LCOMM.2018.2817555.
    [9] ZHAO Wenjing, WANG Gongpu, ATAPATTU S, et al. Blind channel estimation in ambient backscatter communication systems with multiple-antenna reader[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 320–324. doi: 10.1109/ICCChina.2018.8641171.
    [10] ZHU Yue, WANG Gongpu, TANG Hengliang, et al. Channel estimation for ambient backscatter systems over frequency-selective channels[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 384–388. doi: 10.1109/ICCChina.2018.8641250.
    [11] LIU Xuemeng, LIU Chang, LI Yonghui, et al. Deep residual learning-assisted channel estimation in ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 339–343. doi: 10.1109/LWC.2020.3030222.
    [12] ABDALLAH S, SALAMEH A I, and SAAD M. Joint channel, carrier frequency offset and I/Q imbalance estimation in ambient backscatter communication systems[J]. IEEE Communications Letters, 2021, 25(7): 2250–2254. doi: 10.1109/LCOMM.2021.3075493.
    [13] ABDALLAH S, VERBOVEN Z, SAAD M, et al. Channel estimation for full-duplex multi-antenna ambient backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(5): 3059–3072. doi: 10.1109/TCOMM.2023.3251387.
    [14] CUI Ziqi, WANG Gongpu, WEI Xusheng, et al. Channel estimation and optimal training design for ambient backscatter communication systems under sensitivity constraint[C]. Proceedings of 2022 IEEE 96th Vehicular Technology Conference, London, United Kingdom, 2022: 1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012695.
    [15] CUI Ziqi, WANG Gongpu, GAO Jie, et al. Channel estimation for backscatter communication systems under circuit sensitivity constraint[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 7441–7446. doi: 10.1109/TVT.2023.3347926.
    [16] ABEYWICKRAMA S, YOU Changsheng, ZHANG Rui, et al. Channel estimation for intelligent reflecting surface assisted backscatter communication[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2519–2523. doi: 10.1109/LWC.2021.3106165.
    [17] LIN Junliang, WANG Gongpu, XU Rongtao, et al. Versatile-modulation and megabit-rate backscatter system: Design, implementation, and experimental results[J]. IEEE Internet of Things Journal, 2024, 11(5): 8240–8252. doi: 10.1109/JIOT.2023.3318634.
    [18] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490.
    [19] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094.
    [20] D’AMICO A A and MORELLI M. Symbol-spaced feedforward techniques for blind bit synchronization and channel estimation in FSO-OOK communications[J]. IEEE Transactions on Communications, 2024, 72(1): 361–374. doi: 10.1109/TCOMM.2023.3317931.
    [21] GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [22] XIE Ning, XU Yuntao, ZHANG Jiaheng, et al. Joint estimation of channel responses and phase noises in asynchronous MIMO systems with intentional timing offset[J]. IEEE Transactions on Communications, 2023, 71(1): 412–426. doi: 10.1109/TCOMM.2022.3223711.
    [23] SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [24] MISHRA D and JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]. Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4659–4663. doi: 10.1109/ICASSP.2019.8683663.
    [25] JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004. doi: 10.1109/ICASSP40776.2020.9053695.
    [26] ZHOU Zhengyi, GE Ning, WANG Zhaocheng, et al. Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach[J]. IEEE Transactions on Communications, 2021, 69(2): 1228–1243. doi: 10.1109/TCOMM.2020.3034259.
  • 加載中
圖(7)
計(jì)量
  • 文章訪問(wèn)數(shù):  248
  • HTML全文瀏覽量:  53
  • PDF下載量:  46
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-11-15
  • 網(wǎng)絡(luò)出版日期:  2024-12-12
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回