速率分割多址接入系統(tǒng)安全傳輸方案的設(shè)計(jì)與優(yōu)化
doi: 10.11999/JEIT240389
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶郵電大學(xué)移動(dòng)通信技術(shù)重慶市重點(diǎn)實(shí)驗(yàn)室 重慶 400065
Design and Optimization of Secure Transmission Scheme for Rate-Splitting Multiple Access System
-
1.
School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要: 該文研究基于速率分割多址接入的兩用戶下行安全傳輸?shù)姆桨冈O(shè)計(jì)與優(yōu)化問(wèn)題??紤]發(fā)給兩用戶的部分消息需要在用戶間保密的場(chǎng)景,在保證保密消息傳輸速率的條件下最大化非保密消息傳輸和速率。公共流僅傳輸非保密消息,而私有流分時(shí)傳輸非保密消息和保密消息,對(duì)各消息流發(fā)送預(yù)編碼矢量,速率分割、私有流非保密和保密消息傳輸時(shí)長(zhǎng)分配等進(jìn)行聯(lián)合優(yōu)化。通過(guò)將原問(wèn)題分解為兩層優(yōu)化問(wèn)題,并利用二分搜索、松弛變量、連續(xù)凸逼近等方法將原問(wèn)題進(jìn)行轉(zhuǎn)化和求解。仿真結(jié)果顯示,相較于私有流僅傳輸保密消息的速率分割多址接入和分時(shí)的空分多址接入方案,所提出的方案能獲得更高非保密傳輸速率。Abstract: The design and optimization issues of secure downlink transmission scheme for two users based on rate-splitting multiple access are studied. Considering a scenario where partial messages sent to two users need to be kept confidential between users, the sum rate of non-confidential messages is maximized while ensuring the transmission rate of confidential messages. The common stream only carries the non-confidential messages, while the private streams carry both the non-confidential and confidential messages in a time-sharing manner. Transmit precoding vectors for each message flow, rate splitting, transmission time allocation for the private streams of non-confidential and confidential messages are jointly optimized. By decomposing the original problem into a two-level optimization problem and using methods such as binary search, relaxation variables, and successive convex approximation, the original problem is transformed and solved. The simulation results show that the proposed scheme can achieve higher non-confidential sum rate compared to the rate-splitting multiple access, where the private streams carry only the confidential messages, and space division multiple access with time-sharing between non-confidential messages and confidential messages.
-
Key words:
- Rate splitting /
- Multiple access /
- Physical layer security /
- Precoding
-
1 優(yōu)化問(wèn)題的求解算法
(1)初始化參數(shù):迭代次數(shù)n=0,收斂因子ε, ${t^{\{ 0\} }}$, $ {\mathbf{f}}_{\text{c}}^{\{ 0\} } $, $ {\mathbf{f}}_{{\text{p,}}k}^{\{ 0\} } $,
$ {\mathbf{f}}_{{\text{s,}}k}^{\{ 0\} } $, $ \rho _{{\text{p,}}k}^{\{ 0\} } $, $ \rho _{{\text{s,}}k}^{\{ 0\} } $, $ \rho _{{\text{c,}}k,i}^{\{ 0\} } $, $ \nu _{\bar k,k}^{\{ 0\} } $(2) while (3) n=n+1 (4) 將優(yōu)化問(wèn)題中的$ {{\mathbf{\tilde f}}_{\text{c}}} $, $ {{\mathbf{\tilde f}}_{{\text{p,}}k}} $, $ {{\mathbf{\tilde f}}_{{\text{s,}}k}} $, $ {\tilde \rho _{{\text{p,}}k}} $, $ {\tilde \rho _{{\text{s,}}k}} $, $ {\tilde \rho _{{\text{c,}}k,i}} $和$ {\tilde \nu _{\bar k,k}} $分別
置為$ {\mathbf{f}}_{\text{c}}^{\{ n - 1\} } $, $ {\mathbf{f}}_{{\text{p,}}k}^{\{ n - 1\} } $, $ {\mathbf{f}}_{{\text{s,}}k}^{\{ n - 1\} } $, $ \rho _{{\text{p,}}k}^{\{ n - 1\} } $, $ \rho _{{\text{s,}}k}^{\{ n - 1\} } $, $ \rho _{{\text{c,}}k,i}^{\{ n - 1\} } $
和$ \nu _{\bar k,k}^{\{ n - 1\} } $求解問(wèn)題(24),得到最優(yōu)解$ {\mathbf{f}}_{\text{c}}^* $, $ {\mathbf{f}}_{{\text{p,}}k}^* $, $ {\mathbf{f}}_{{\text{s,}}k}^* $, $ \rho _{{\text{p,}}k}^* $,
$ \rho _{{\text{s,}}k}^* $, $ \rho _{{\text{c,}}k,i}^* $, $ \nu _{\bar k,k}^* $和${t^*}$(5)更新$ {\mathbf{f}}_{\text{c}}^{\{ n\} } = {\mathbf{f}}_{\text{c}}^* $, $ {\mathbf{f}}_{{\text{p,}}k}^{\{ n\} } = {\mathbf{f}}_{{\text{p,}}k}^* $, $ {\mathbf{f}}_{{\text{s,}}k}^{\{ n\} } = {\mathbf{f}}_{{\text{s,}}k}^* $, $ \rho _{{\text{p,}}k}^{\{ n\} } = \rho _{{\text{p,}}k}^* $,
$ \rho _{{\text{s,}}k}^{\{ n\} } = \rho _{{\text{s,}}k}^* $, $ \rho _{{\text{c,}}k,i}^{\{ n\} } = \rho _{{\text{c,}}k,i}^* $, $ \nu _{\bar k,k}^{\{ n\} } = \nu _{\bar k,k}^* $, ${t^{\{ n\} }} = {t^*}$(6) until $ \left| {\dfrac{{{t^{\{ n\} }} - {t^{\{ n - 1\} }}}}{{{t^{\{ n\} }}}}} \right| \le \varepsilon $ (7)輸出:${t^*}$, $ {\mathbf{f}}_{\text{c}}^* $, $ {\mathbf{f}}_{{\text{p,}}k}^* $, $ {\mathbf{f}}_{{\text{s,}}k}^* $和$c_k^*$ 下載: 導(dǎo)出CSV
2 時(shí)長(zhǎng)分配系數(shù)的優(yōu)化求解
(1) l<θ<u,初始化l=0,u=1,收斂因子$\delta $ (2) while (3) θ = (l+u)/2 (4)調(diào)用算法1求解第2層優(yōu)化問(wèn)題 (5)若當(dāng)前θ下問(wèn)題有可行解,則l=θ;否則u=$\theta $ (6) until u–l≤ $\delta $ (7)輸出最優(yōu)的θ*=$\theta $ 下載: 導(dǎo)出CSV
-
[1] MAO Yijie, DIZDAR O, CLERCKX B, et al. Rate-splitting multiple access: Fundamentals, survey, and future research trends[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2073–2126. doi: 10.1109/COMST.2022.3191937. [2] LIU Yuanwei, QIN Zhijin, ELKASHLAN M, et al. Nonorthogonal multiple access for 5G and beyond[J]. Proceedings of the IEEE, 2017, 105(12): 2347–2381. doi: 10.1109/JPROC.2017.2768666. [3] CLERCKX B, MAO Yijie, JORSWIECK E A, et al. A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1265–1308. doi: 10.1109/JSAC.2023.3242718. [4] CLERCKX B, MAO Yijie, SCHOBER R, et al. Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis[J]. IEEE Wireless Communications Letters, 2020, 9(3): 349–353. doi: 10.1109/LWC.2019.2954518. [5] LIU Penglu, LI Yong, CHENG Wei, et al. Active intelligent reflecting surface aided RSMA for millimeter-wave hybrid antenna array[J]. IEEE Transactions on Communications, 2023, 71(9): 5287–5302. doi: 10.1109/TCOMM.2023.3285290. [6] 雷維嘉, 張智, 雷宏江, 等. 速率分割多址接入系統(tǒng)中的協(xié)作中繼傳輸策略與優(yōu)化[J]. 北京郵電大學(xué)學(xué)報(bào), 2024, 47(2): 58–65. doi: 10.13190/j.jbupt.2023-096.LEI Weijia, ZHANG Zhi, LEI Hongjiang, et al. Cooperative relay transmission strategy and optimization in rate-splitting multiple access system[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(2): 58–65. doi: 10.13190/j.jbupt.2023-096. [7] SI Zhiwen, YIN Longfei, and CLERCKX B. Rate-splitting multiple access for multigateway multibeam satellite systems with feeder link interference[J]. IEEE Transactions on Communications, 2022, 70(3): 2147–2162. doi: 10.1109/TCOMM.2022.3144487. [8] PAPAZAFEIROPOULOS A and RATNARAJAH T. Rate-splitting robustness in multi-pair massive MIMO relay systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5623–5636. doi: 10.1109/TWC.2018.2847668. [9] TONG Yuqiao, LI Dongdong, YANG Zhutian, et al. Cooperative rate splitting secure transmission with an untrusted user relay[J]. IEEE Transactions on Vehicular Technology, 2022, 72(2): 2667–2671. doi: 10.1109/TVT.2022.3211763. [10] TONG Yuqiao, LI Dongdong, YANG Zhutian, et al. Outage analysis of rate splitting networks with an untrusted user[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2626–2631. doi: 10.1109/TVT.2022.3209794. [11] XIA Huiyun, MAO Yijie, CLERCKX B, et al. Weighted sum-rate maximization for rate-splitting multiple access based secure communication[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 19–24. doi: 10.1109/WCNC51071.2022.9771854. [12] FU Hao, FENG Suili, TANG Weijun, et al. Robust secure beamforming design for two-user downlink MISO rate-splitting systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8351–8365. doi: 10.1109/TWC.2020.3021725. [13] XIA Huiyun, ZHOU Xiaokang, HAN Shuai, et al. Security-reliability tradeoff in RSMA-based communications against eavesdropper collusion[J]. IEEE Wireless Communications Letters, 2023, 12(9): 1504–1507. doi: 10.1109/LWC.2023.3279860. [14] XIA Huiyun, HAN Shuai, and LI Cheng. Max-min fair optimization in RSMA-assisted secure communications with artificial noise[J]. IEEE Communications Letters, 2023, 27(12): 3181–3184. doi: 10.1109/LCOMM.2023.3328782. [15] JOUDEH H and CLERCKX B. Sum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: A rate-splitting approach[J]. IEEE Transactions on Communications, 2016, 64(11): 4847–4861. doi: 10.1109/TCOMM.2016.2603991. -