基于濾波器組多載波的組網(wǎng)低截獲探通一體化信號設(shè)計
doi: 10.11999/JEIT240342
-
1.
南京信息工程大學(xué)電子與信息工程學(xué)院 南京 210044
-
2.
南京航空航天大學(xué)雷達成像與微波光子技術(shù)教育部重點實驗室 南京 210016
Design of Low Probability of Intercept and Communication Signal Based on Filter Bank Multi-Carrier for Multi-node Network Systems
-
1.
School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
-
2.
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
-
摘要: 在現(xiàn)代電子對抗中,將多部探通一體化系統(tǒng)進行組網(wǎng),可以提高單站探通一體化系統(tǒng)探測效率和協(xié)同探測能力。由于探通一體化信號自身峰均比較高,信號易被截獲,系統(tǒng)的生存能力受到嚴(yán)重威脅。為了提升探通一體化信號的低截獲性能(LPI),首先該文在濾波器組多載波的框架下,提出一種通信子載波分組功率優(yōu)化和雷達子載波異置等功率優(yōu)化的組網(wǎng)低截獲探通一體化信號時頻結(jié)構(gòu)。然后,該文從信息論的角度出發(fā),統(tǒng)一了系統(tǒng)的性能評估指標(biāo);將最小化截獲信息距離作為優(yōu)化目標(biāo)函數(shù),建立了組網(wǎng)探通一體化信號低截獲優(yōu)化模型。該文將此優(yōu)化模型轉(zhuǎn)換為凸優(yōu)化問題,并利用Karush-Kuhn-Tucker條件對其進行求解。仿真結(jié)果表明,該文所設(shè)計的組網(wǎng)低截獲探通一體化信號在探測動目標(biāo)時,節(jié)點間雷達干擾低至近–60 dB,通信誤碼率滿足10–6數(shù)量級,同時能有效降低截獲信號的信噪比。
-
關(guān)鍵詞:
- 低截獲概率 /
- 探通一體化 /
- 組網(wǎng)系統(tǒng) /
- 濾波器組多載波 /
- 信息論
Abstract: In modern electronic countermeasures, grouping of multiple joint radar and communication systems can improve the detection efficiency and collaborative detection capability of the single joint radar and communication system. Due to the high peak to average power ratio of the joint radar and communication signal itself, the signal is easy to be intercepted, and the system’s survivability is seriously threatened. In order to improve the Low Probability of Intercept (LPI) performance of the joint radar and communication signal, a time-frequency structure of grouping LPI joint radar and communication signal with communication subcarrier grouping power optimization and radar subcarrier interleaving equal power optimization under the framework of filter bank multicarrier is proposed in this paper. Then, from the perspective of the information theory, the paper unifies the performance assessment metrics of the system; On this basis, minimizing the intercepted information divergence of the interceptor is taken as the optimization objective, and an LPI optimization model of the group network joint radar and communication signal is established. The paper converts this optimization model into a convex optimization problem and solves it using the Karush-Kuhn-Tucker condition. The simulation results show that the radar interference of the network LPI joint radar and communication signal designed in this paper has inter-node radar interference as low as nearly –60 dB when detecting moving targets, and the communication bit error rate satisfies 10–6 order of magnitude, while the signal-to-noise ratio of the intercepted signal is effectively reduced. -
[1] ZHANG Haowei, LIU Weijian, LIU Yuan, et al. Joint target and user assignment as well as dwell time and spectrum allocation in a distributed radar–communication coexistence network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 1159–1175. doi: 10.1109/TAES.2023.3335179. [2] 馬丁友, 劉祥, 黃天耀, 等. 雷達通信一體化: 共用波形設(shè)計和性能邊界[J]. 雷達學(xué)報, 2022, 11(2): 198–212. doi: 10.12000/JR21146.MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146. [3] 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學(xué)報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515. [4] QIAN Junhui, HE Zishu, HUANG Nuo, et al. Transmit designs for spectral coexistence of MIMO radar and MIMO communication systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2072–2076. doi: 10.1109/TCSII.2018.2822845. [5] SHI Chenguang, WANG Fei, SALOUS S, et al. Low probability of intercept-based optimal OFDM waveform design strategy for an integrated radar and communications system[J]. IEEE Access, 2018, 6: 57689–57699. doi: 10.1109/ACCESS.2018.2874007. [6] 孟紫薇, 梅進杰, 朱晟坤, 等. 基于OFDM共享信號的低截獲雷達通信一體化波形設(shè)計[J]. 空軍預(yù)警學(xué)院學(xué)報, 2021, 35(1): 9–12. doi: 10.3969/j.issn.2095-5839.2021.01.003.MENG Ziwei, MEI Jinjie, ZHU Shengkun, et al. Integrated waveform design of low-intercept radar communication based on OFDM shared signal[J]. Journal of Air & Space Early Warning Research, 2021, 35(1): 9–12. doi: 10.3969/j.issn.2095-5839.2021.01.003. [7] 李琬璐, 相征, 任鵬. 基于FBMC信號的低截獲雷達通信一體化波形設(shè)計[J]. 雷達學(xué)報, 2023, 12(2): 287–296. doi: 10.12000/JR22064.LI Wanlu, XIANG Zheng, and REN Peng. Filter bank multi-carrier waveform design for low probability of intercepting joint radar and communication system[J]. Journal of Radars, 2023, 12(2): 287–296. doi: 10.12000/JR22064. [8] 王杰, 裴澤琳, 陳軍, 等. 基于濾波器組多載波梳狀譜的雷達通信一體化信號技術(shù)[J]. 信號處理, 2022, 38(11): 2308–2319. doi: 10.16798/j.issn.1003-0530.2022.11.008.WANG Jie, PEI Zelin, CHEN Jun, et al. Radar communication integrated signal technology based on FBMC comb spectrum[J]. Journal of Signal Processing, 2022, 38(11): 2308–2319. doi: 10.16798/j.issn.1003-0530.2022.11.008. [9] 單成兆. 面向雷達通信一體化的時間調(diào)制陣列波束賦形技術(shù)研究[D]. [博士論文], 哈爾濱工業(yè)大學(xué), 2022. doi: 10.27061/d.cnki.ghgdu.2020.005048.SHAN Chenzhao. Research on time-modulated array beamforming technology for radar-communications integration[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2022. doi: 10.27061/d.cnki.ghgdu.2020.005048. [10] LUO Meng, XING Wenge, LI Gui, et al. Research on an improved networked radar algorithm for integrated detection and communication[C]. 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing, Chengdu, China, 2023: 1214–1218. doi: 10.1109/ICMSP58539.2023.10170964. [11] 切爾尼亞克, 周萬幸, 吳鳴亞, 胡明春, 等譯. 雙(多)基地雷達系統(tǒng)[M]. 北京: 電子工業(yè)出版社, 2011.CHERNYAK V S, ZHOU Wanxin, WU Mingya, HU Mingchun, et al. translation. Fundamentals of Multisite Radar Systems Multistatic Radars and Multiradar Systems[M]. Beijing: Publishing House of Electronics Industry, 2011. [12] 胡飛. 雷達通信一體化組網(wǎng)目標(biāo)定位算法研究[D]. [碩士論文], 電子科技大學(xué), 2015.HU Fei. Research about target localization in integrated radar and communication system[D]. [Master dissertation], University of Electronic Science and Technology of China, 2015. [13] SHI Chenguang, ZHOU Jianjiang, and WANG Fei. Low probability of intercept optimization for radar network based on mutual information[C]. 2014 IEEE China Summit & International Conference on Signal and Information Processing, Xi’an, China, 2014: 683–687. doi: 10.1109/ChinaSIP.2014.6889331. [14] 孫希平, 吳熙芃, 張磊, 等. 基于正交信號的組網(wǎng)雷達目標(biāo)融合檢測與定位方法[J]. 現(xiàn)代雷達, 2023, 45(5): 42–49. doi: 10.16592/j.cnki.1004-7859.2023.05.004.SUN Xiping, WU Xipeng, ZHANG Lei, et al. Networked radar target fusion detection and localization method based on orthogonal signals[J]. Modern Radar, 2023, 45(5): 42–49. doi: 10.16592/j.cnki.1004-7859.2023.05.004. [15] 張磊, 羅迎, 張群. 雷達組網(wǎng)系統(tǒng)對抗有源干擾方法綜述[J]. 信息對抗技術(shù), 2023, 2(6): 1–16. doi: 10.12399/j.issn.2097-163x.2023.06.001.ZHANG Lei, LUO Ying, and ZHANG Qun. Review of countermeasures against active jamming for radar network[J]. Information Countermeasure Technology, 2023, 2(6): 1–16. doi: 10.12399/j.issn.2097-163x.2023.06.001. [16] SHI Chenguang, WANG Yijie, WANG Fei, et al. LPI performance optimization scheme for a joint radar-communications system[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104362. [17] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Waveform designs for joint wireless communication and radar sensing: Pitfalls and opportunities[J]. IEEE Internet of Things Journal, 2023, 10(17): 15252–15265. doi: 10.1109/JIOT.2023.3265367. -