一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

光學(xué)智能反射表面輔助的UAV群分布式光移動(dòng)通信

王海卜 張?jiān)阼?/a>,  葛熒萌 曾涵

王海卜, 張?jiān)阼? 葛熒萌, 曾涵. 光學(xué)智能反射表面輔助的UAV群分布式光移動(dòng)通信[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 48-56. doi: 10.11999/JEIT240302
引用本文: 王海卜, 張?jiān)阼? 葛熒萌, 曾涵. 光學(xué)智能反射表面輔助的UAV群分布式光移動(dòng)通信[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 48-56. doi: 10.11999/JEIT240302
WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology, 2025, 47(1): 48-56. doi: 10.11999/JEIT240302
Citation: WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology, 2025, 47(1): 48-56. doi: 10.11999/JEIT240302

光學(xué)智能反射表面輔助的UAV群分布式光移動(dòng)通信

doi: 10.11999/JEIT240302
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(623B2017, 61960206005, 61803211, 61971136, 62171127),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFB1806603),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(2242022k30001)
詳細(xì)信息
    作者簡(jiǎn)介:

    王海卜:男,博士生,研究方向?yàn)楣鈱W(xué)可重構(gòu)智能反射表面技術(shù)、6G光移動(dòng)通信系統(tǒng)設(shè)計(jì)

    張?jiān)阼。耗?,教授,研究方向?yàn)?G移動(dòng)通信系統(tǒng)、光移動(dòng)通信、量子信息技術(shù)

    葛熒萌:男,博士生,研究方向?yàn)榛谌斯ぶ悄艿幕鶐盘?hào)處理算法

    曾涵:女,博士生,研究方向?yàn)樽杂煽臻g光通信系統(tǒng)和UAV-自由空間光通信系統(tǒng)信道建模

    通訊作者:

    張?jiān)阼 ?a href="mailto:zczhang@seu.edu.cn">zczhang@seu.edu.cn

  • 中圖分類號(hào): TN929.12

Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters

Funds: The National Natural Science Foundation of China (623B2017, 61960206005, 61803211, 61971136, 62171127), The National Key R&D Program of China (2020YFB1806603), The Fundamental Research Funds for the Central Universities (2242022k30001)
  • 摘要: 隨著無(wú)人機(jī)(UAV)系統(tǒng)的規(guī)模持續(xù)擴(kuò)大以及對(duì)更高通信速率的需求增長(zhǎng),UAV光移動(dòng)通信(UAV-OMC)已經(jīng)成為一個(gè)有前景的技術(shù)方向。然而,傳統(tǒng)的UAV-OMC難以支持多UAV之間的通信。該文基于光學(xué)智能反射表面(OIRS)技術(shù),提出一個(gè)適用于UAV群的分布式OMC系統(tǒng)。通過(guò)在特定的UAV上設(shè)置OIRS,利用OIRS將光信號(hào)從單個(gè)UAV節(jié)點(diǎn)擴(kuò)散到多個(gè)UAV節(jié)點(diǎn)。這一系統(tǒng)在保留UAV-OMC系統(tǒng)的高能效和高速度的同時(shí),能夠支持分布式UAV群的通信。對(duì)所提出的系統(tǒng)進(jìn)行了數(shù)學(xué)建模,考慮了一系列現(xiàn)實(shí)因素,如OIRS的光束控制、UAV之間的相對(duì)運(yùn)動(dòng)和UAV的抖動(dòng)等,這些因素都符合實(shí)際系統(tǒng)的特點(diǎn)。此外,該文還推導(dǎo)出了系統(tǒng)的誤比特率(BER)和漸進(jìn)中斷概率的閉式表達(dá)式?;诶碚摲治龊湍M結(jié)果,討論了各個(gè)參數(shù)和系統(tǒng)設(shè)計(jì)的影響。
  • 圖  1  OIRS輔助的UAV集群分布式OMC系統(tǒng)示意圖

    圖  2  UAV通信場(chǎng)景下OIRS波束聚焦與對(duì)準(zhǔn)示意圖

    圖  3  不同參數(shù)下的OIRS輔助的UAV集群OMC系統(tǒng)的理論BER和仿真BER

    表  1  系統(tǒng)參數(shù)

    參數(shù)
    光波長(zhǎng) ($\lambda $)1550 nm
    接收機(jī)的噪聲方差($ \sigma _n^2 $)${10^{ - 6}}$
    發(fā)射端發(fā)散角度($ \phi $)6 mrad
    發(fā)射端抖動(dòng)標(biāo)準(zhǔn)差($ {\sigma _{{\varphi _{{t_s}}}}} $)$2 \times {10^{ - 3}}$
    從發(fā)射端到OIRS的鏈路距離($ {l_{s,o}} $)100 m
    大氣衰減系數(shù)(${\iota _n}$)0.9
    OIRS到從屬UAV n的鏈路距離($ {l_{o,{r_n}}} $)50 m
    接收機(jī)直徑 (2a)20 cm
    下載: 導(dǎo)出CSV
  • [1] 張?jiān)阼? 江浩. 智能超表面使能無(wú)人機(jī)高能效通信信道建模與傳輸機(jī)理分析[J]. 電子學(xué)報(bào), 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [2] 朱秋明, 倪浩然, 華博宇, 等. 無(wú)人機(jī)毫米波信道測(cè)量與建模研究綜述[J]. 移動(dòng)通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [3] DABIRI M T, SADOUGH S M S, and ANSARI I S. Tractable optical channel modeling between UAVs[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11543–11550. doi: 10.1109/TVT.2019.2940226.
    [4] ZHANG Zaichen, DANG Jian, WU Liang, et al. Optical mobile communications: Principles, implementation, and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 471–482. doi: 10.1109/TVT.2018.2880817.
    [5] NAJAFI M, SCHMAUSS B, and SCHOBER R. Intelligent reflecting surfaces for free space optical communication systems[J]. IEEE Transactions on Communications, 2021, 69(9): 6134–6151. doi: 10.1109/TCOMM.2021.3084637.
    [6] JAMALI V, AJAM H, NAJAFI M, et al. Intelligent reflecting surface assisted free-space optical communications[J]. IEEE Communications Magazine, 2021, 59(10): 57–63. doi: 10.1109/MCOM.001.2100406.
    [7] WANG Haibo, ZHANG Zaichen, ZHU Bingcheng, et al. Approaches to array-type optical IRSs: Schemes and comparative analysis[J]. Journal of Lightwave Technology, 2022, 40(12): 3576–3591. doi: 10.1109/JLT.2022.3152812.
    [8] MING Rui, ZHOU Zhiyan, LUO Xiwen, et al. Optical tracking system for multi-UAV clustering[J]. IEEE Sensors Journal, 2021, 21(17): 19382–19394. doi: 10.1109/JSEN.2021.3091280.
    [9] DABIRI M T, REZAEE M, MOHAMMADI L, et al. Modulating retroreflector based free space optical link for UAV-to-ground communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8631–8645. doi: 10.1109/TWC.2022.3167945.
    [10] NATH S, SENGAR S, SHRIVASTAVA S K, et al. Impact of atmospheric turbulence, pointing error, and traffic pattern on the performance of cognitive hybrid FSO/RF system[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 1194–1207. doi: 10.1109/TCCN.2019.2952116.
    [11] SANDALIDIS H G, TSIFTSIS T A, KARAGIANNIDIS G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Letters, 2008, 12(1): 44–46. doi: 10.1109/LCOMM.2008.071408.
    [12] IJAZ M, GHASSEMLOOY Z, PEREZ J, et al. Enhancing the atmospheric visibility and fog attenuation using a controlled FSO channel[J]. IEEE Photonics Technology Letters, 2013, 25(13): 1262–1265. doi: 10.1109/LPT.2013.2264046.
    [13] WANG Zhengdao and GIANNAKIS G B. A simple and general parameterization quantifying performance in fading channels[J]. IEEE Transactions on Communications, 2003, 51(8): 1389–1398. doi: 10.1109/TCOMM.2003.815053.
    [14] SUN Shiyuan, WANG Tengjiao, YANG Fang, et al. Intelligent reflecting surface-aided visible light communications: Potentials and challenges[J]. IEEE Vehicular Technology Magazine, 2022, 17(1): 47–56. doi: 10.1109/MVT.2021.3127869.
    [15] AJAM H, NAJAFI M, JAMALI V, et al. Modeling and design of IRS-assisted multilink FSO systems[J]. IEEE Transactions on Communications, 2022, 70(5): 3333–3349. doi: 10.1109/TCOMM.2022.3163767.
  • 加載中
圖(3) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  340
  • HTML全文瀏覽量:  130
  • PDF下載量:  65
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-07-16
  • 網(wǎng)絡(luò)出版日期:  2024-08-02
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回