一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

靜態(tài)與動(dòng)態(tài)域先驗(yàn)增強(qiáng)的兩階段視頻壓縮感知重構(gòu)網(wǎng)絡(luò)

楊春玲 梁梓文

楊春玲, 梁梓文. 靜態(tài)與動(dòng)態(tài)域先驗(yàn)增強(qiáng)的兩階段視頻壓縮感知重構(gòu)網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4247-4258. doi: 10.11999/JEIT240295
引用本文: 楊春玲, 梁梓文. 靜態(tài)與動(dòng)態(tài)域先驗(yàn)增強(qiáng)的兩階段視頻壓縮感知重構(gòu)網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4247-4258. doi: 10.11999/JEIT240295
YANG Chunling, LIANG Ziwen. Static and Dynamic-domain Prior Enhancement Two-stage Video Compressed Sensing Reconstruction Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4247-4258. doi: 10.11999/JEIT240295
Citation: YANG Chunling, LIANG Ziwen. Static and Dynamic-domain Prior Enhancement Two-stage Video Compressed Sensing Reconstruction Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4247-4258. doi: 10.11999/JEIT240295

靜態(tài)與動(dòng)態(tài)域先驗(yàn)增強(qiáng)的兩階段視頻壓縮感知重構(gòu)網(wǎng)絡(luò)

doi: 10.11999/JEIT240295
基金項(xiàng)目: 廣東省自然科學(xué)基金(2019A1515011949)
詳細(xì)信息
    作者簡(jiǎn)介:

    楊春玲:女,教授,研究方向?yàn)閳D像/視頻壓縮編碼、圖像質(zhì)量評(píng)價(jià)

    梁梓文:男,碩士生,研究方向?yàn)閳D像/視頻壓縮感知

    通訊作者:

    楊春玲 eeclyang@scut.edu.cn

  • 中圖分類(lèi)號(hào): TN919.8; TN911.7

Static and Dynamic-domain Prior Enhancement Two-stage Video Compressed Sensing Reconstruction Network

Funds: The Natural Science Foundation of Guangdong Province (2019A1515011949)
  • 摘要: 視頻壓縮感知重構(gòu)屬于高度欠定問(wèn)題,初始重構(gòu)質(zhì)量低與運(yùn)動(dòng)估計(jì)方式單一限制了幀間相關(guān)性的有效建模。為改善視頻重構(gòu)性能,該文提出靜態(tài)與動(dòng)態(tài)域先驗(yàn)增強(qiáng)兩階段重構(gòu)網(wǎng)絡(luò)(SDPETs-Net)。首先,提出利用參考幀測(cè)量值重構(gòu)2階靜態(tài)域殘差的策略,并設(shè)計(jì)相應(yīng)的靜態(tài)域先驗(yàn)增強(qiáng)網(wǎng)絡(luò)(SPE-Net),為動(dòng)態(tài)域先驗(yàn)建模提供可靠基礎(chǔ)。其次,設(shè)計(jì)塔式可變形卷積聯(lián)合注意力搜索網(wǎng)絡(luò)(PDCA-Net),通過(guò)結(jié)合可變形卷積與注意力機(jī)制的優(yōu)勢(shì),并構(gòu)建塔式級(jí)聯(lián)結(jié)構(gòu),有效地建模并利用動(dòng)態(tài)域先驗(yàn)知識(shí)。最后,多特征融合殘差重構(gòu)網(wǎng)絡(luò)(MFRR-Net)從多尺度提取并融合各特征的關(guān)鍵信息以重構(gòu)殘差,緩解兩階段耦合導(dǎo)致不穩(wěn)定的模型訓(xùn)練,并抑制特征的退化。實(shí)驗(yàn)結(jié)果表明,在UCF101測(cè)試集下,與具有代表性的兩階段網(wǎng)絡(luò)JDR-TAFA-Net相比,峰值信噪比(PSNR)平均提升3.34 dB,與近期的多階段網(wǎng)絡(luò)DMIGAN相比,平均提升0.79 dB。
  • 圖  1  SDPETs-Net整體架構(gòu)

    圖  2  兩級(jí)多維殘差補(bǔ)充階段實(shí)現(xiàn)細(xì)節(jié)

    圖  3  PDCA-Net網(wǎng)絡(luò)結(jié)構(gòu)

    圖  4  預(yù)對(duì)齊與細(xì)化對(duì)齊

    圖  5  不同算法及模型重構(gòu)視覺(jué)效果對(duì)比(Soccer序列第12幀)

    圖  6  不同模型重構(gòu)視覺(jué)效果對(duì)比(REDS4-000序列第36幀)

    表  1  UCF101測(cè)試集重構(gòu)性能對(duì)比PSNR(dB)/SSIM

    $ {r}_{\mathrm{n}\mathrm{k}} $CSVideoNetSTM-NetImr-NetJDRTAFA-NetDUMHANDMIGAN本文
    SDPETs-Net
    $ 0.037 $26.87/0.8132.50/0.9333.40/—33.14/0.9435.37/—35.86/—36.36/0.96
    $ 0.018 $25.09/0.7731.14/0.9131.90/—31.63/0.9133.70/—34.23/—35.01/0.95
    $ 0.009 $24.23/0.7429.98/0.8930.51/—30.33/0.8932.11/—32.65/—33.75/0.94
    平均值25.40/0.7731.21/0.9131.94/—31.70/0.9133.73/—34.25/—35.04/0.95
    下載: 導(dǎo)出CSV

    表  2  QCIF序列重構(gòu)性能對(duì)比PSNR(dB)($ {r}_{\mathrm{k}}=0.5 $,$ \mathrm{G}\mathrm{O}\mathrm{P}=8 $)

    $ {r}_{\mathrm{n}\mathrm{k}} $ 算法
    (網(wǎng)絡(luò))
    視頻序列 平均值
    Silent Ice Foreman Coastguard Soccer Mobile
    0.01 RRS 21.25 20.72 18.51 21.16 21.42 15.24 19.72
    SSIM-InterF-GSR 24.77 24.65 26.86 25.08 23.39 21.92 24.45
    VCSNet-2 31.94 25.77 26.07 25.66 24.62 21.42 25.91
    ImrNet 35.30 29.25 31.58 28.94 27.10 25.02 29.53
    DUMHAN 37.25 31.69 34.46 31.63 28.37 29.28 32.11
    本文SDPETs-Net 38.05 32.92 36.05 32.76 29.50 30.35 33.27
    0.05 RRS 25.76 26.15 26.84 22.66 26.80 16.68 24.15
    SSIM-InterF-GSR 33.68 28.81 33.18 28.09 27.65 22.99 29.07
    VCSNet-2 34.52 29.51 29.75 27.01 28.62 22.79 28.70
    ImrNet 38.07 33.76 36.03 30.80 31.81 27.55 33.00
    DUMHAN 40.42 36.58 39.44 33.63 33.74 31.61 35.90
    本文SDPETs-Net 41.09 37.98 40.82 34.31 34.85 32.36 36.90
    0.1 RRS 33.95 31.09 35.17 27.34 29.74 20.00 29.55
    SSIM-InterF-GSR 35.09 31.73 35.75 30.24 30.31 24.35 31.25
    VCSNet-2 34.92 30.95 31.14 28.01 30.51 23.62 29.86
    ImrNet 39.17 35.90 37.37 31.44 34.24 28.19 34.39
    DUMHAN 41.73 38.66 41.68 34.73 36.40 32.48 37.61
    本文SDPETs-Net 42.71 40.10 42.97 35.22 37.52 33.07 38.60
    下載: 導(dǎo)出CSV

    表  3  REDS4序列重構(gòu)性能對(duì)比PSNR(dB)/SSIM

    $ {r}_{\mathrm{n}\mathrm{k}} $ 序列 VCSNet-2 ImrNet STM-Net DUMHAN 本文SDPETs-Net
    0.01 000 23.24/— 25.71/0.67 26.45/0.73 27.74/0.77 29.44/0.85
    011 24.19/— 25.93/0.66 26.89/0.71 26.72/0.70 27.77/0.74
    015 26.85/— 30.01/0.81 30.67/0.84 31.02/0.85 32.66/0.89
    020 23.34/— 25.15/0.66 25.98/0.71 25.97/0.70 26.99/0.75
    0.1 000 27.55/— 29.09/0.85 30.69/0.90 31.80/0.91 32.82/0.94
    011 29.65/— 32.29/0.89 32.82/0.90 33.52/0.90 34.36/0.92
    015 32.34/— 36.33/0.94 37.06/0.95 38.00/0.95 39.07/0.96
    020 28.88/— 31.23/0.90 31.65/0.91 32.17/0.91 33.16/0.93
    下載: 導(dǎo)出CSV

    表  4  不同模型的空間與重構(gòu)時(shí)間(GPU)與重構(gòu)精度(PSNR(dB)/SSIM)對(duì)比

    模型 參數(shù)量(M) 平均單幀重構(gòu)時(shí)間(GPU)(s) 平均重構(gòu)精度(PSNR(dB)/SSIM)
    ImrNet 8.69 0.03 31.94/—
    STM-Net 9.20 0.03 31.21/0.91
    JDR-TAFA-Net 12.41 0.04 31.70/0.91
    本文SDPETs-Net 7.44 0.04 35.04/0.95
    本文SDPETs-Net 7.44 0.02(GOP并行) 35.04/0.95
    下載: 導(dǎo)出CSV

    表  5  靜態(tài)域先驗(yàn)增強(qiáng)階段的消融研究(PSNR(dB)/SSIM)

    模型 設(shè)置 QCIF序列 平均值
    SR MG Silent Ice Foreman Coastguard Soccer Mobile
    基礎(chǔ) 36.71/0.97 31.42/0.94 34.04/0.94 31.19/0.88 28.20/0.76 27.82/0.92 31.56/0.90
    1 × 36.32/0.96 31.09/0.94 33.14/0.92 30.14/0.85 27.99/0.74 26.78/0.90 30.91/0.89
    2 × × 26.65/0.61 26.21/0.80 24.90/0.63 24.06/0.51 26.77/0.67 19.42/0.35 24.67/0.60
    下載: 導(dǎo)出CSV

    表  6  PDCA-Net消融實(shí)驗(yàn)對(duì)比(PSNR(dB)/SSIM)

    模型設(shè)置REDS4序列平均值
    PAPPRAPCRF000011015020
    基礎(chǔ)31.74/0.9132.17/0.8736.99/0.9531.00/0.8932.98/0.90
    1×31.56/0.9131.92/0.8736.78/0.9430.81/0.8832.77/0.90
    2××30.38/0.8831.04/0.8535.94/0.9329.82/0.8631.80/0.88
    3×××30.32/0.8730.96/0.8535.87/0.9329.79/0.8631.73/0.88
    4××××30.08/0.8730.80/0.8435.65/0.9329.67/0.8631.55/0.87
    5×××××29.38/0.8430.55/0.8435.19/0.9229.40/0.8531.13/0.86
    下載: 導(dǎo)出CSV
  • [1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [2] DO T T, CHEN Yi, NGUYEN D T, et al. Distributed compressed video sensing[C]. 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 2009: 1393–1396. doi: 10.1109/ICIP.2009.5414631.
    [3] KUO Yonghong, WU Kai, and CHEN Jian. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129–148. doi: 10.1007/s11045-015-0337-4.
    [4] OU Weifeng, YANG Chunling, LI Wenhao, et al. A two-stage multi-hypothesis reconstruction scheme in compressed video sensing[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 2494–2498. doi: 10.1109/ICIP.2016.7532808.
    [5] ZHAO Chen, MA Siwei, ZHANG Jian, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(6): 1182–1195. doi: 10.1109/TCSVT.2016.2527181.
    [6] 和志杰, 楊春玲, 湯瑞東. 視頻壓縮感知中基于結(jié)構(gòu)相似的幀間組稀疏表示重構(gòu)算法研究[J]. 電子學(xué)報(bào), 2018, 46(3): 544–553. doi: 10.3969/j.issn.0372-2112.2018.03.005.

    HE Zhijie, YANG Chunling, and TANG Ruidong. Research on structural similarity based inter-frame group sparse representation for compressed video sensing[J]. Acta Electronica Sinica, 2018, 46(3): 544–553. doi: 10.3969/j.issn.0372-2112.2018.03.005.
    [7] CHEN Can, WU Yutong, ZHOU Chao, et al. JsrNet: A joint sampling–reconstruction framework for distributed compressive video sensing[J]. Sensors, 2019, 20(1): 206. doi: 10.3390/s20010206.
    [8] SHI Wuzhen, LIU Shaohui, JIANG Feng, et al. Video compressed sensing using a convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 425–438. doi: 10.1109/TCSVT.2020.2978703.
    [9] XU Kai and REN Fengbo. CSVideoNet: A real-time end-to-end learning framework for high-frame-rate video compressive sensing[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 1680–1688. doi: 10.1109/WACV.2018.00187.
    [10] XIA Kaiguo, PAN Zhisong, and MAO Pengqiang. Video compressive sensing reconstruction using unfolded LSTM[J]. Sensors, 2022, 22(19): 7172. doi: 10.3390/s22197172.
    [11] ZHANG Tong, CUI Wenxue, HUI Chen, et al. Hierarchical interactive reconstruction network for video compressive sensing[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095587.
    [12] NEZHAD V A, AZGHANI M, and MARVASTI F. Compressed video sensing based on deep generative adversarial network[J]. Circuits, Systems, and Signal Processing, 2024, 43(8): 5048–5064. doi: 10.1007/s00034-024-02672-8.
    [13] LING Xi, YANG Chunling, and PEI Hanqi. Compressed video sensing network based on alignment prediction and residual reconstruction[C]. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 2020: 1–6. doi: 10.1109/ICME46284.2020.9102723.
    [14] YANG Xin and YANG Chunling. Imrnet: An iterative motion compensation and residual reconstruction network for video compressed sensing[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 2350–2354. doi: 10.1109/ICASSP39728.2021.9414534.
    [15] WEI Zhichao, YANG Chunling, and XUAN Yunyi. Efficient video compressed sensing reconstruction via exploiting spatial-temporal correlation with measurement constraint[C]. 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021: 1–6. doi: 10.1109/ICME51207.2021.9428203.
    [16] ZHOU Chao, CHEN Can, and ZHANG Dengyin. Deep video compressive sensing with attention-aware bidirectional propagation network[C]. 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 2022: 1–5. doi: 10.1109/CISP-BMEI56279.2022.9980235.
    [17] 楊鑫, 楊春玲. 基于MAP的多信息流梯度更新與聚合視頻壓縮感知重構(gòu)算法[J]. 電子學(xué)報(bào), 2023, 51(11): 3320–3330. doi: 10.12263/DZXB.20220958.

    YANG Xin and YANG Chunling. MAP-based multi-information flow gradient update and aggregation for video compressed sensing reconstruction[J]. Acta Electronica Sinica, 2023, 51(11): 3320–3330. doi: 10.12263/DZXB.20220958.
    [18] YANG Xin and YANG Chunling. MAP-inspired deep unfolding network for distributed compressive video sensing[J]. IEEE Signal Processing Letters, 2023, 30: 309–313. doi: 10.1109/LSP.2023.3260707.
    [19] GU Zhenfei, ZHOU Chao, and LIN Guofeng. A temporal shift reconstruction network for compressive video sensing[J]. IET Computer Vision, 2024, 18(4): 448–457. doi: 10.1049/cvi2.12234.
    [20] 魏志超, 楊春玲. 時(shí)域注意力特征對(duì)齊的視頻壓縮感知重構(gòu)網(wǎng)絡(luò)[J]. 電子學(xué)報(bào), 2022, 50(11): 2584–2592. doi: 10.12263/DZXB.20220041.

    WEI Zhichao and YANG Chunling. Video compressed sensing reconstruction network based on temporal-attention feature alignment[J]. Acta Electronica Sinica, 2022, 50(11): 2584–2592. doi: 10.12263/DZXB.20220041.
    [21] RANJAN A and BLACK M J. Optical flow estimation using a spatial pyramid network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2720–2729. doi: 10.1109/CVPR.2017.291.
    [22] CHAN K C K, WANG Xintao, YU Ke, et al. Understanding deformable alignment in video super-resolution[C]. 2021 35th AAAI Conference on Artificial Intelligence, 2021: 973–981. doi: 10.1609/aaai.v35i2.16181.
    [23] LIANG Ziwen and YANG Chunling. Feature-domain proximal high-dimensional gradient descent network for image compressed sensing[C]. 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023: 1475–1479. doi: 10.1109/ICIP49359.2023.10222347.
    [24] ZHU Xizhou, HU Han, LIN S, et al. Deformable ConvNets v2: More deformable, better results[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 9300–9308. doi: 10.1109/CVPR.2019.00953.
    [25] LIU Ze, HU Han, LIN Yutong, et al. Swin transformer V2: Scaling up capacity and resolution[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11999–12009. doi: 10.1109/CVPR52688.2022.01170.
    [26] HUANG Cong, LI Jiahao, LI Bin, et al. Neural compression-based feature learning for video restoration[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 5862–5871. doi: 10.1109/CVPR52688.2022.00578.
    [27] ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161.
    [28] SOOMRO K, ZAMIR A R, and SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[EB/OL]. https://arxiv.org/abs/1212.0402, 2012.
    [29] NAH S, BAIK S, HONG S, et al. NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, USA, 2019: 1996–2005. doi: 10.1109/CVPRW.2019.00251.
  • 加載中
圖(6) / 表(6)
計(jì)量
  • 文章訪問(wèn)數(shù):  109
  • HTML全文瀏覽量:  73
  • PDF下載量:  12
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-09-19
  • 網(wǎng)絡(luò)出版日期:  2024-10-08
  • 刊出日期:  2024-11-10

目錄

    /

    返回文章
    返回