非授權(quán)頻段下無(wú)人機(jī)輔助通信的軌跡與資源分配優(yōu)化
doi: 10.11999/JEIT240275
-
1.
國(guó)防科技大學(xué)電子對(duì)抗學(xué)院 合肥 230031
-
2.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710082
Trajectory and Resource Allocation Optimization for Unmanned Aerial Vehicles Assisted Communications in Unlicensed Bands
-
1.
School of Electronic Countermeasures, National University of Defense Technology, Hefei 230031, China
-
2.
Information and Navigation College, Aire Force Engineering University, Xi’an 710082, China
-
摘要: 為解決無(wú)人機(jī)(UAV)在非授權(quán)頻段下頻譜資源受限的瓶頸問(wèn)題,針對(duì)城市環(huán)境中UAV輔助監(jiān)測(cè)的通信網(wǎng)絡(luò),該文提出一種下墊式(Underlay)接入機(jī)制下的高譜效聯(lián)合優(yōu)化方案?;赨AV的高機(jī)動(dòng)性將空地信道建模為概率性視距(LoS)信道,考慮同信道干擾和UAV最大速度約束建立聯(lián)合功率分配-軌跡規(guī)劃的混合資源優(yōu)化模型,在主用戶占用頻譜情況下使UAV在給定任務(wù)時(shí)間內(nèi)實(shí)現(xiàn)監(jiān)測(cè)數(shù)據(jù)的快速傳輸。原始問(wèn)題為NP-hard的混合整數(shù)非凸問(wèn)題,首先將其解耦為雙層規(guī)劃問(wèn)題,采用松弛變量和逐次凸逼近(SCA)技術(shù)將軌跡問(wèn)題轉(zhuǎn)換為凸規(guī)劃問(wèn)題后實(shí)現(xiàn)有效求解。仿真驗(yàn)證了所提聯(lián)合優(yōu)化方案相比改進(jìn)粒子群優(yōu)化(PSO)方案能夠提升最高約19%的頻譜效率,且對(duì)于維度較高的軌跡規(guī)劃問(wèn)題,所提基于SCA的算法具有更低的算法復(fù)雜度和更快的收斂性。
-
關(guān)鍵詞:
- 無(wú)人機(jī)通信 /
- 頻譜共享 /
- 軌跡規(guī)劃 /
- 凸優(yōu)化
Abstract: To solve the bottleneck problem of constrained spectrum resource for Unmanned Aerial Vehicles (UAVs) in unlicensed bands, a co-optimization scheme high spectral efficiency in underlay mechanism is proposed for UAV-assisted monitoring communication networks in urban environment. Considering the high maneuverability of UAVs, the air-to-ground channel is modeled as a probabilistic Line-of-Sight (LoS) channel, and the co-channel interference and maximum speed constraints are adopted to formulate a hybrid resource optimization model for power allocation and trajectory planning, enabling UAVs to construct the fast transmission scheme for monitoring data with occupied spectrum within the given time. The original problem is an NP-hard and non-convex integer problem, which is first decomposed into a two-layer programming problem, and then solved by applying the slack variable and Successive Convex Approximation (SCA) technologies to transform the trajectory design problem into a convex programming problem. Compared with the Particle Swarm Optimization (PSO) algorithm, the proposed joint optimization scheme is verified to improve the spectral efficiency by up to about 19% in simulations. For high-dimensional trajectory planning problems, the SCA-based algorithm is proved to have lower complexity and faster convergence. -
[1] 林志, 林敏, 黃清泉, 等. 能效最大化準(zhǔn)則下的星地融合網(wǎng)絡(luò)的安全波束成形算法[J]. 電子學(xué)報(bào), 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.LIN Zhi, LIN Min, HUANG Qingquan, et al. Secure beamforming algorithm in satellite-terrestrial integrated networks with energy efficiency maximization criterion[J]. Acta Electronica Sinica, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944. [2] 張廣馳, 顧澤霖, 崔苗. 空地協(xié)同通信感知一體化系統(tǒng)的軌跡與資源分配聯(lián)合優(yōu)化[J]. 電子與信息學(xué)報(bào), 2024, 46(6): 2382–2390. doi: 10.11999/JEIT230716.ZHANG Guangchi, GU Zelin, and CUI Miao. Joint Trajectory and resource allocation optimization for air-ground collaborative integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2382–2390. doi: 10.11999/JEIT230716. [3] 徐勇軍, 李國(guó)權(quán), 陳前斌, 等. 基于非正交多址接入異構(gòu)攜能網(wǎng)絡(luò)穩(wěn)健能效資源分配算法[J]. 通信學(xué)報(bào), 2020, 41(2): 84–96. doi: 10.11959/j.issn.1000-436x.2020029.XU Yongjun, LI Guoquan, CHEN Qianbin, et al. Robust energy efficiency for SWIPT-enabled heterogeneous NOMA network[J]. Journal on Communications, 2020, 41(2): 84–96. doi: 10.11959/j.issn.1000-436x.2020029. [4] 徐勇軍, 劉子腱, 李國(guó)權(quán), 等. 基于NOMA的無(wú)線攜能D2D通信魯棒能效優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175. [5] GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894–914. doi: 10.1109/JPROC.2009.2015717. [6] 韓蕙竹, 黃仰超, 胡航, 等. 無(wú)人機(jī)短包通信中基于NOMA傳輸?shù)陌踩阅芊治鯷J]. 信號(hào)處理, 2022, 38(12): 2582–2593. doi: 10.16798/j.issn.1003-0530.2022.12.013.HAN Huizhu, HUANG Yangchao, HU Hang, et al. Security performance analysis based on NOMA transmission in UAV short packet communication[J]. Journal of Signal Processing, 2022, 38(12): 2582–2593. doi: 10.16798/j.issn.1003-0530.2022.12.013. [7] XU Xiaoren, XU Yihan, ZHOU Wen, et al. Energy efficient resource allocation for UAV-served energy harvesting-supported cognitive industrial M2M networks[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1454–1458. doi: 10.1109/LWC.2023.3278627. [8] QI Weijing, SONG Qingyang, GUO Lei, et al. Energy-efficient resource allocation for UAV-assisted vehicular networks with spectrum sharing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7691–7702. doi: 10.1109/TVT.2022.3163430. [9] XIAO He, WU Chun, JIANG Hong, et al. Energy-efficient resource allocation in multiple UAVs-assisted energy harvesting-powered two-hop cognitive radio network[J]. IEEE Sensors Journal, 2023, 23(7): 7644–7655. doi: 10.1109/JSEN.2023.3247436. [10] 劉伯陽(yáng), 楊寧樂(lè), 馬杰, 等. 無(wú)人機(jī)認(rèn)知邊緣計(jì)算資源分配與軌跡優(yōu)化方案[J]. 西安郵電大學(xué)學(xué)報(bào), 2021, 26(1): 20–27. doi: 10.13682/j.issn.2095-6533.2021.01.004.LIU Boyang, YANG Ningle, MA Jie, et al. Resource allocation and trajectory optimization scheme for UAV-enabled cognitive edge computing networks[J]. Journal of Xi’an University of Posts and Telecommunications, 2021, 26(1): 20–27. doi: 10.13682/j.issn.2095-6533.2021.01.004. [11] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559. [12] AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736. [13] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073. [14] XU Jie, ZENG Yong, and ZHANG Rui. UAV-Enabled wireless power transfer: Trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5092–5106. doi: 10.1109/TWC.2018.2838134. [15] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for Multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293. -