一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

低秩和聯(lián)合平滑性約束下的時(shí)變海表面溫度重構(gòu)方法

李姣 萬騰汶 邱偉

李姣, 萬騰汶, 邱偉. 低秩和聯(lián)合平滑性約束下的時(shí)變海表面溫度重構(gòu)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4259-4267. doi: 10.11999/JEIT240253
引用本文: 李姣, 萬騰汶, 邱偉. 低秩和聯(lián)合平滑性約束下的時(shí)變海表面溫度重構(gòu)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4259-4267. doi: 10.11999/JEIT240253
LI Jiao, WAN Tengwen, QIU Wei. Time-varying Sea Surface Temperature Reconstruction Leveraging Low Rank and Joint Smoothness Constraints[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4259-4267. doi: 10.11999/JEIT240253
Citation: LI Jiao, WAN Tengwen, QIU Wei. Time-varying Sea Surface Temperature Reconstruction Leveraging Low Rank and Joint Smoothness Constraints[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4259-4267. doi: 10.11999/JEIT240253

低秩和聯(lián)合平滑性約束下的時(shí)變海表面溫度重構(gòu)方法

doi: 10.11999/JEIT240253
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(42176197),湖南省自然科學(xué)基金(2022JJ40461),湖南省教育廳優(yōu)秀青年項(xiàng)目(21B0301)
詳細(xì)信息
    作者簡(jiǎn)介:

    李姣:女,副教授,研究方向?yàn)樽顑?yōu)化方法及應(yīng)用、生物分子計(jì)算

    萬騰汶:女,碩士生,研究方向?yàn)樽顑?yōu)化方法及應(yīng)用

    邱偉:男,副教授,研究方向?yàn)橄∈栊盘?hào)重構(gòu)、海洋信息處理

    通訊作者:

    邱偉 qiuwei08@nudt.edu.cn

  • 中圖分類號(hào): TN911.7

Time-varying Sea Surface Temperature Reconstruction Leveraging Low Rank and Joint Smoothness Constraints

Funds: The National Natural Science Foundation of China (42176197), The Natural Science Foundation of Hunan Province (2022JJ40461), The Excellent Youth Foundation of Education Bureau of Hunan Province (21B0301)
  • 摘要: 海表面溫度對(duì)于海洋動(dòng)力過程及海氣相互作用等具有重要意義,是海洋環(huán)境關(guān)鍵要素之一。浮標(biāo)是海表面溫度觀測(cè)的常用手段,但由于浮標(biāo)在空間的分布不規(guī)則,浮標(biāo)采集的海表面溫度數(shù)據(jù)也呈現(xiàn)非規(guī)則性。另外,浮標(biāo)在實(shí)際工作中難免存在故障,致使采集的海表面溫度數(shù)據(jù)存在缺失。因此對(duì)存在缺失的非規(guī)則海表面溫度數(shù)據(jù)進(jìn)行重構(gòu)具有重要意義。該文通過將海表面溫度數(shù)據(jù)建立為時(shí)變圖信號(hào),利用圖信號(hào)處理方法解決海表面溫度缺失數(shù)據(jù)重構(gòu)問題。首先,利用數(shù)據(jù)的低秩性和時(shí)域-圖域聯(lián)合變差特性構(gòu)建海表面溫度重構(gòu)模型;其次,基于交替方向乘子法框架提出一種求解該優(yōu)化模型的基于低秩和聯(lián)合平滑性(LRJS)的時(shí)變圖信號(hào)重構(gòu)方法,并分析該方法的計(jì)算復(fù)雜度和估計(jì)誤差的理論極限;最后,采用南海和太平洋海域海表溫度數(shù)據(jù)對(duì)方法的有效性進(jìn)行了評(píng)估,結(jié)果表明,與現(xiàn)有缺失數(shù)據(jù)重構(gòu)方法相比,該文所提LRJS方法有更高的重建精度。
  • 圖  1  太平洋海域海表面溫度數(shù)據(jù)采集連接圖

    圖  2  所有方法在太平洋海域海表面溫度數(shù)據(jù)集上的性能

    圖  3  南海海域海表溫度數(shù)據(jù)采集連接圖

    圖  4  所有方法在南海海域海表溫度數(shù)據(jù)集上的性能

    1  共軛梯度法

     輸入:$ {\boldsymbol{Y}},{\boldsymbol{J}},{{\boldsymbol{L}}_{\rm{G}}},{{\boldsymbol{L}}_T},{{\boldsymbol{Z}}^k},{{\boldsymbol{P}}^k},{\boldsymbol{D}},\alpha ,\beta ,\rho $,終止迭代閾值$ \varepsilon $,最
     大迭代次數(shù)$ K $
     輸出:重構(gòu)信號(hào)時(shí)變圖信號(hào)$ {{\boldsymbol{X}}_{^i}} $
     初始化設(shè)置:$ {{\boldsymbol{X}}_i} = 0,\Delta {{\boldsymbol{X}}_i} = 0,i = 0 $
     迭代:
      (1) 確定步長(zhǎng):
        $ \tau = - \dfrac{{\left\langle {\Delta {{\boldsymbol{X}}_i},\nabla f({{\boldsymbol{X}}_i})} \right\rangle }}{{\left\langle {\Delta {{\boldsymbol{X}}_i},\nabla f({{\boldsymbol{X}}_i}) + {\boldsymbol{Y}} + \rho {{\boldsymbol{Z}}_i} - {{\boldsymbol{P}}_i}} \right\rangle }} $
     其中,$ \Delta {{\boldsymbol{X}}_i} $為第$ i $步的搜索方向,$ \tau $為第$ i $步的最優(yōu)步長(zhǎng),其由
     線性最小化步長(zhǎng)準(zhǔn)則$ \mathop {\min }\limits_\tau f({{\boldsymbol{X}}_i} + \tau \Delta {{\boldsymbol{X}}_i}) $決定。
     確定步長(zhǎng):
      (2) 更新搜索方向:
       $ \begin{aligned} & {{\boldsymbol{X}}_{i + 1}} = {{\boldsymbol{X}}_i} + \tau \Delta {{\boldsymbol{X}}_i}; \xi {\text{ = }}\frac{{||\nabla f({{\boldsymbol{X}}_{i + 1}})||_{{\mathrm{F}}} ^2}}{{||\nabla f({{\boldsymbol{X}}_{i + 1}})||_{{\mathrm{F}}} ^2}};\\& \Delta {{\boldsymbol{X}}_{i + 1}} = - \nabla f({{\boldsymbol{X}}_{i + 1}}) + \xi \Delta {{\boldsymbol{X}}_i}\end{aligned}$
     終止條件:如果$ i = K $或者$ {\text{||}}\Delta {{\boldsymbol{X}}_i}|{|_{\mathrm{F}}} \le \varepsilon $,則停止迭代;否則令$ i = i + 1 $,繼續(xù)迭代,直至滿足終止條件。
    下載: 導(dǎo)出CSV

    2  LRJS算法求解步驟

     輸入:$ {\boldsymbol{Y}},{\boldsymbol{J}},{{\boldsymbol{L}}_{{\mathrm{G}}} },{{\boldsymbol{L}}_{{{T}}} },{{\boldsymbol{Z}}^k},{{\boldsymbol{P}}^k},{\boldsymbol{D}},\alpha ,\beta ,\rho ,\mu $,終止迭代閾值$ \varepsilon $,
     最大迭代次數(shù)$ K $
     輸出:重構(gòu)海表面溫度數(shù)據(jù)$ {{\boldsymbol{X}}^k} $
     初始化設(shè)置:$ {{\boldsymbol{X}}^0} = {{\boldsymbol{Z}}^0} = {\boldsymbol{Y}},{{\boldsymbol{P}}^0} = 0,k = 0 $
     迭代:
     (1) 更新${{\boldsymbol{X}}^{k + 1}}$:利用算法1的共軛梯度法;
     (2) 更新${{\boldsymbol{Z}}^{k + 1}}$:利用式(21);
     (3) 更新${{\boldsymbol{P}}^{k + 1}}$:利用式(17);
     終止條件:如果$ k = K $或者${\text{||}}\Delta {{\boldsymbol{X}}^k}|{|_{{\mathrm{F}}} } \le \varepsilon $,則停止迭代;否則
     令$k = k + 1$,繼續(xù)迭代,直至滿足終止條件。
    下載: 導(dǎo)出CSV
  • [1] DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4: 11–37. doi: 10.1146/annurev-marine-041911-111611.
    [2] LODER J W, VAN DER BAAREN A, and YASHAYAEV I. Climate comparisons and change projections for the Northwest Atlantic from six CMIP5 models[J]. Atmosphere-Ocean, 2015, 53(5): 529–555. doi: 10.1080/07055900.2015.1087836.
    [3] BARREIRO M, CHANG Ping, and SARAVANAN R. Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model[J]. Journal of Climate, 2002, 15(7): 745–763. doi: 10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2.
    [4] 王奎民. 主要海洋環(huán)境因素對(duì)水下航行器航行影響分析[J]. 智能系統(tǒng)學(xué)報(bào), 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006.

    WANG Kuimin. Influence of main ocean environments on the navigation of underwater vehicles[J]. CAAI Transactions on Intelligent Systems, 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006.
    [5] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83–98. doi: 10.1109/MSP.2012.2235192.
    [6] LIU Jinling, JIANG Junzheng, LIN Jiming, et al. Generalized Newton methods for graph signal matrix completion[J]. Digital Signal Processing, 2021, 112: 103009. doi: 10.1016/j.dsp.2021.103009.
    [7] 張彥海, 蔣俊正. 基于笛卡爾乘積圖上Sobolev平滑的時(shí)變圖信號(hào)分布式批量重構(gòu)[J]. 電子與信息學(xué)報(bào), 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194.

    ZHANG Yanhai and JIANG Junzheng. Distributed batch reconstruction of time-varying graph signals via Sobolev smoothness on Cartesian product graph[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194.
    [8] QIU Kai, MAO Xianghui, SHEN Xinyue, et al. Time-varying graph signal reconstruction[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 870–883. doi: 10.1109/JSTSP.2017.2726969.
    [9] MAO Xianghui, QIU Kai, LI Tiejian, et al. Spatio-temporal signal recovery based on low rank and differential smoothness[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6281–6296. doi: 10.1109/TSP.2018.2875886.
    [10] GIRALDO J H, MAHMOOD A, GARCIA-GARCIA B, et al. Reconstruction of time-varying graph signals via Sobolev smoothness[J]. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8: 201–214. doi: 10.1109/TSIPN.2022.3156886.
    [11] 索秋月, 林基明, 王俊義. 利用聯(lián)合平滑性的時(shí)變圖信號(hào)重構(gòu)算法[J]. 計(jì)算機(jī)應(yīng)用與軟件, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043.

    SUO Qiuyue, LIN Jiming, and WANG Junyi. A time-varying graph signal reconstruction algorithm based on joint smoothness[J]. Computer Applications and Software, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043.
    [12] ZHAI Shiyu, LI Guobing, ZHANG Guomei, et al. Spatio-temporal signal recovery under diffusion-induced smoothness and temporal correlation priors[J]. IET Signal Processing, 2022, 16(2): 157–169. doi: 10.1049/sil2.12082.
    [13] LIU Jinling, LIN Jiming, QIU Hongbing, et al. Time-varying signal recovery based on low rank and graph-time smoothness[J]. Digital Signal Processing, 2023, 133: 103821. doi: 10.1016/j.dsp.2022.103821.
    [14] QI Zefeng, LIAO Xuewen, LI Ang, et al. Signal recovery for incomplete ocean data via graph signal processing[C]. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4274–4279. doi: 10.1109/GLOBECOM48099.2022.10000902.
    [15] LI Siyuan, CHENG Lei, ZHANG Ting, et al. Graph-guided Bayesian matrix completion for ocean sound speed field reconstruction[J]. The Journal of the Acoustical Society of America, 2023, 153(1): 689–710. doi: 10.1121/10.0017064.
    [16] CHEN Yangge, CHENG Lei, and WU Y C. Bayesian low-rank matrix completion with dual-graph embedding: Prior analysis and tuning-free inference[J]. Signal Processing, 2023, 204: 108826. doi: 10.1016/j.sigpro.2022.108826.
    [17] LOUKAS A and FOUCARD D. Frequency analysis of time-varying graph signals[C]. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, USA, 2016: 346–350. doi: 10.1109/GlobalSIP.2016.7905861.
    [18] GRASSI F, LOUKAS A, PERRAUDIN N, et al. A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 817–829. doi: 10.1109/TSP.2017.2775589.
    [19] HACKBUSCH W. Iterative Solution of Large Sparse Systems of Equations[M]. New York, USA: Springer, 1994: 248–295. doi: 10.1007/978-1-4612-4288-8.
    [20] BELL H E. Gershgorin’s theorem and the zeros of polynomials[J]. The American Mathematical Monthly, 1965, 72(3): 292–295. doi: 10.2307/2313703.
    [21] MA Shiqian, GOLDFARB D, and CHEN Lifeng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1/2): 321–353. doi: 10.1007/s10107-009-0306-5.
    [22] SIBSON R. A brief description of natural neighbour interpolation[M]. BARNETT V. Interpreting Multivariate Data. Hoboken: Wiley, 1981.
    [23] PERRAUDIN N, PARATTE J, SHUMAN D, et al. GSPBOX: A toolbox for signal processing on graphs[J]. Eprint Arxiv, 2016, 61(7): 1644–1656.
    [24] Physical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration. Sea surface temperature (SST) V2[EB/OL]. http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, 2023.
    [25] China Argo Real-Time Data Center. Argo real-time data[EB/OL]. ftp: //data. argo. org. cn/pub/ARGO/, 2023.
  • 加載中
圖(4) / 表(2)
計(jì)量
  • 文章訪問數(shù):  128
  • HTML全文瀏覽量:  48
  • PDF下載量:  18
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-10-10
  • 網(wǎng)絡(luò)出版日期:  2024-10-15
  • 刊出日期:  2024-11-10

目錄

    /

    返回文章
    返回