低秩和聯(lián)合平滑性約束下的時(shí)變海表面溫度重構(gòu)方法
doi: 10.11999/JEIT240253
-
1.
長(zhǎng)沙理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 長(zhǎng)沙 410114
-
2.
中國(guó)人民解放軍國(guó)防科技大學(xué)氣象海洋學(xué)院 長(zhǎng)沙 410073
Time-varying Sea Surface Temperature Reconstruction Leveraging Low Rank and Joint Smoothness Constraints
-
1.
School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
-
2.
School of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
-
摘要: 海表面溫度對(duì)于海洋動(dòng)力過程及海氣相互作用等具有重要意義,是海洋環(huán)境關(guān)鍵要素之一。浮標(biāo)是海表面溫度觀測(cè)的常用手段,但由于浮標(biāo)在空間的分布不規(guī)則,浮標(biāo)采集的海表面溫度數(shù)據(jù)也呈現(xiàn)非規(guī)則性。另外,浮標(biāo)在實(shí)際工作中難免存在故障,致使采集的海表面溫度數(shù)據(jù)存在缺失。因此對(duì)存在缺失的非規(guī)則海表面溫度數(shù)據(jù)進(jìn)行重構(gòu)具有重要意義。該文通過將海表面溫度數(shù)據(jù)建立為時(shí)變圖信號(hào),利用圖信號(hào)處理方法解決海表面溫度缺失數(shù)據(jù)重構(gòu)問題。首先,利用數(shù)據(jù)的低秩性和時(shí)域-圖域聯(lián)合變差特性構(gòu)建海表面溫度重構(gòu)模型;其次,基于交替方向乘子法框架提出一種求解該優(yōu)化模型的基于低秩和聯(lián)合平滑性(LRJS)的時(shí)變圖信號(hào)重構(gòu)方法,并分析該方法的計(jì)算復(fù)雜度和估計(jì)誤差的理論極限;最后,采用南海和太平洋海域海表溫度數(shù)據(jù)對(duì)方法的有效性進(jìn)行了評(píng)估,結(jié)果表明,與現(xiàn)有缺失數(shù)據(jù)重構(gòu)方法相比,該文所提LRJS方法有更高的重建精度。
-
關(guān)鍵詞:
- 海表面溫度 /
- 時(shí)變圖信號(hào) /
- 信號(hào)重構(gòu) /
- 低秩 /
- 聯(lián)合平滑性
Abstract: Sea surface temperature is one of the key elements of the marine environment, which is of great significance to the marine dynamic process and air-sea interaction. Buoy is a commonly used method of sea surface temperature observation. However, due to the irregular distribution of buoys in space, the sea surface temperature data collected by buoys also show irregularity. In addition, it is inevitable that sometimes the buoy is out of order, so that the sea surface temperature data collected is incomplete. Therefore, it is of great significance to reconstruct the incomplete irregular sea surface temperature data. In this paper, the sea surface temperature data is established as a time-varying graph signal, and the graph signal processing method is used to solve the problem of missing data reconstruction of sea surface temperature. Firstly, the sea surface temperature reconstruction model is constructed by using the low rank data and the joint variation characteristics of time-domain and graph-domain. Secondly, a time-varying graph signal reconstruction method based on Low Rank and Joint Smoothness (LRJS) constraints is proposed to solve the optimization problem by using the framework of alternating direction multiplier method, and the computational complexity and the theoretical limit of the estimation error of the method are analyzed. Finally, the sea surface temperature data of the South China Sea and the Pacific Ocean are used to evaluate the effectiveness of the method. The results show that the LRJS method proposed in this paper can improve the reconstruction accuracy compared with the existing missing data reconstruction methods. -
1 共軛梯度法
輸入:$ {\boldsymbol{Y}},{\boldsymbol{J}},{{\boldsymbol{L}}_{\rm{G}}},{{\boldsymbol{L}}_T},{{\boldsymbol{Z}}^k},{{\boldsymbol{P}}^k},{\boldsymbol{D}},\alpha ,\beta ,\rho $,終止迭代閾值$ \varepsilon $,最
大迭代次數(shù)$ K $輸出:重構(gòu)信號(hào)時(shí)變圖信號(hào)$ {{\boldsymbol{X}}_{^i}} $ 初始化設(shè)置:$ {{\boldsymbol{X}}_i} = 0,\Delta {{\boldsymbol{X}}_i} = 0,i = 0 $ 迭代: (1) 確定步長(zhǎng):
$ \tau = - \dfrac{{\left\langle {\Delta {{\boldsymbol{X}}_i},\nabla f({{\boldsymbol{X}}_i})} \right\rangle }}{{\left\langle {\Delta {{\boldsymbol{X}}_i},\nabla f({{\boldsymbol{X}}_i}) + {\boldsymbol{Y}} + \rho {{\boldsymbol{Z}}_i} - {{\boldsymbol{P}}_i}} \right\rangle }} $其中,$ \Delta {{\boldsymbol{X}}_i} $為第$ i $步的搜索方向,$ \tau $為第$ i $步的最優(yōu)步長(zhǎng),其由
線性最小化步長(zhǎng)準(zhǔn)則$ \mathop {\min }\limits_\tau f({{\boldsymbol{X}}_i} + \tau \Delta {{\boldsymbol{X}}_i}) $決定。確定步長(zhǎng): (2) 更新搜索方向: $ \begin{aligned} & {{\boldsymbol{X}}_{i + 1}} = {{\boldsymbol{X}}_i} + \tau \Delta {{\boldsymbol{X}}_i}; \xi {\text{ = }}\frac{{||\nabla f({{\boldsymbol{X}}_{i + 1}})||_{{\mathrm{F}}} ^2}}{{||\nabla f({{\boldsymbol{X}}_{i + 1}})||_{{\mathrm{F}}} ^2}};\\& \Delta {{\boldsymbol{X}}_{i + 1}} = - \nabla f({{\boldsymbol{X}}_{i + 1}}) + \xi \Delta {{\boldsymbol{X}}_i}\end{aligned}$ 終止條件:如果$ i = K $或者$ {\text{||}}\Delta {{\boldsymbol{X}}_i}|{|_{\mathrm{F}}} \le \varepsilon $,則停止迭代;否則令$ i = i + 1 $,繼續(xù)迭代,直至滿足終止條件。 下載: 導(dǎo)出CSV
2 LRJS算法求解步驟
輸入:$ {\boldsymbol{Y}},{\boldsymbol{J}},{{\boldsymbol{L}}_{{\mathrm{G}}} },{{\boldsymbol{L}}_{{{T}}} },{{\boldsymbol{Z}}^k},{{\boldsymbol{P}}^k},{\boldsymbol{D}},\alpha ,\beta ,\rho ,\mu $,終止迭代閾值$ \varepsilon $,
最大迭代次數(shù)$ K $輸出:重構(gòu)海表面溫度數(shù)據(jù)$ {{\boldsymbol{X}}^k} $ 初始化設(shè)置:$ {{\boldsymbol{X}}^0} = {{\boldsymbol{Z}}^0} = {\boldsymbol{Y}},{{\boldsymbol{P}}^0} = 0,k = 0 $ 迭代: (1) 更新${{\boldsymbol{X}}^{k + 1}}$:利用算法1的共軛梯度法; (2) 更新${{\boldsymbol{Z}}^{k + 1}}$:利用式(21); (3) 更新${{\boldsymbol{P}}^{k + 1}}$:利用式(17); 終止條件:如果$ k = K $或者${\text{||}}\Delta {{\boldsymbol{X}}^k}|{|_{{\mathrm{F}}} } \le \varepsilon $,則停止迭代;否則
令$k = k + 1$,繼續(xù)迭代,直至滿足終止條件。下載: 導(dǎo)出CSV
-
[1] DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4: 11–37. doi: 10.1146/annurev-marine-041911-111611. [2] LODER J W, VAN DER BAAREN A, and YASHAYAEV I. Climate comparisons and change projections for the Northwest Atlantic from six CMIP5 models[J]. Atmosphere-Ocean, 2015, 53(5): 529–555. doi: 10.1080/07055900.2015.1087836. [3] BARREIRO M, CHANG Ping, and SARAVANAN R. Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model[J]. Journal of Climate, 2002, 15(7): 745–763. doi: 10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2. [4] 王奎民. 主要海洋環(huán)境因素對(duì)水下航行器航行影響分析[J]. 智能系統(tǒng)學(xué)報(bào), 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006.WANG Kuimin. Influence of main ocean environments on the navigation of underwater vehicles[J]. CAAI Transactions on Intelligent Systems, 2015, 10(2): 316–323. doi: 10.3969/j.issn.1673-4785.201503006. [5] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83–98. doi: 10.1109/MSP.2012.2235192. [6] LIU Jinling, JIANG Junzheng, LIN Jiming, et al. Generalized Newton methods for graph signal matrix completion[J]. Digital Signal Processing, 2021, 112: 103009. doi: 10.1016/j.dsp.2021.103009. [7] 張彥海, 蔣俊正. 基于笛卡爾乘積圖上Sobolev平滑的時(shí)變圖信號(hào)分布式批量重構(gòu)[J]. 電子與信息學(xué)報(bào), 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194.ZHANG Yanhai and JIANG Junzheng. Distributed batch reconstruction of time-varying graph signals via Sobolev smoothness on Cartesian product graph[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1585–1592. doi: 10.11999/JEIT221194. [8] QIU Kai, MAO Xianghui, SHEN Xinyue, et al. Time-varying graph signal reconstruction[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 870–883. doi: 10.1109/JSTSP.2017.2726969. [9] MAO Xianghui, QIU Kai, LI Tiejian, et al. Spatio-temporal signal recovery based on low rank and differential smoothness[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6281–6296. doi: 10.1109/TSP.2018.2875886. [10] GIRALDO J H, MAHMOOD A, GARCIA-GARCIA B, et al. Reconstruction of time-varying graph signals via Sobolev smoothness[J]. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8: 201–214. doi: 10.1109/TSIPN.2022.3156886. [11] 索秋月, 林基明, 王俊義. 利用聯(lián)合平滑性的時(shí)變圖信號(hào)重構(gòu)算法[J]. 計(jì)算機(jī)應(yīng)用與軟件, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043.SUO Qiuyue, LIN Jiming, and WANG Junyi. A time-varying graph signal reconstruction algorithm based on joint smoothness[J]. Computer Applications and Software, 2022, 39(4): 275–280. doi: 10.3969/j.issn.1000-386x.2022.04.043. [12] ZHAI Shiyu, LI Guobing, ZHANG Guomei, et al. Spatio-temporal signal recovery under diffusion-induced smoothness and temporal correlation priors[J]. IET Signal Processing, 2022, 16(2): 157–169. doi: 10.1049/sil2.12082. [13] LIU Jinling, LIN Jiming, QIU Hongbing, et al. Time-varying signal recovery based on low rank and graph-time smoothness[J]. Digital Signal Processing, 2023, 133: 103821. doi: 10.1016/j.dsp.2022.103821. [14] QI Zefeng, LIAO Xuewen, LI Ang, et al. Signal recovery for incomplete ocean data via graph signal processing[C]. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4274–4279. doi: 10.1109/GLOBECOM48099.2022.10000902. [15] LI Siyuan, CHENG Lei, ZHANG Ting, et al. Graph-guided Bayesian matrix completion for ocean sound speed field reconstruction[J]. The Journal of the Acoustical Society of America, 2023, 153(1): 689–710. doi: 10.1121/10.0017064. [16] CHEN Yangge, CHENG Lei, and WU Y C. Bayesian low-rank matrix completion with dual-graph embedding: Prior analysis and tuning-free inference[J]. Signal Processing, 2023, 204: 108826. doi: 10.1016/j.sigpro.2022.108826. [17] LOUKAS A and FOUCARD D. Frequency analysis of time-varying graph signals[C]. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, USA, 2016: 346–350. doi: 10.1109/GlobalSIP.2016.7905861. [18] GRASSI F, LOUKAS A, PERRAUDIN N, et al. A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 817–829. doi: 10.1109/TSP.2017.2775589. [19] HACKBUSCH W. Iterative Solution of Large Sparse Systems of Equations[M]. New York, USA: Springer, 1994: 248–295. doi: 10.1007/978-1-4612-4288-8. [20] BELL H E. Gershgorin’s theorem and the zeros of polynomials[J]. The American Mathematical Monthly, 1965, 72(3): 292–295. doi: 10.2307/2313703. [21] MA Shiqian, GOLDFARB D, and CHEN Lifeng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1/2): 321–353. doi: 10.1007/s10107-009-0306-5. [22] SIBSON R. A brief description of natural neighbour interpolation[M]. BARNETT V. Interpreting Multivariate Data. Hoboken: Wiley, 1981. [23] PERRAUDIN N, PARATTE J, SHUMAN D, et al. GSPBOX: A toolbox for signal processing on graphs[J]. Eprint Arxiv, 2016, 61(7): 1644–1656. [24] Physical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration. Sea surface temperature (SST) V2[EB/OL]. http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, 2023. [25] China Argo Real-Time Data Center. Argo real-time data[EB/OL]. ftp: //data. argo. org. cn/pub/ARGO/, 2023. -