一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于雙重YOLOv8-pose模型的探地雷達(dá)雙曲線關(guān)鍵點(diǎn)檢測與目標(biāo)定位

侯斐斐 彭應(yīng)昊 董健 銀雪

侯斐斐, 彭應(yīng)昊, 董健, 銀雪. 基于雙重YOLOv8-pose模型的探地雷達(dá)雙曲線關(guān)鍵點(diǎn)檢測與目標(biāo)定位[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4305-4316. doi: 10.11999/JEIT240242
引用本文: 侯斐斐, 彭應(yīng)昊, 董健, 銀雪. 基于雙重YOLOv8-pose模型的探地雷達(dá)雙曲線關(guān)鍵點(diǎn)檢測與目標(biāo)定位[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4305-4316. doi: 10.11999/JEIT240242
HOU Feifei, PENG Yinghao, DONG Jian, YIN Xue. Ground Penetrating Radar Hyperbolic Keypoint Detection and Object Localization Based on Dual YOLOv8-pose Model[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4305-4316. doi: 10.11999/JEIT240242
Citation: HOU Feifei, PENG Yinghao, DONG Jian, YIN Xue. Ground Penetrating Radar Hyperbolic Keypoint Detection and Object Localization Based on Dual YOLOv8-pose Model[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4305-4316. doi: 10.11999/JEIT240242

基于雙重YOLOv8-pose模型的探地雷達(dá)雙曲線關(guān)鍵點(diǎn)檢測與目標(biāo)定位

doi: 10.11999/JEIT240242
基金項(xiàng)目: 國家自然科學(xué)基金(62406346),湖南省自然科學(xué)基金(2022JJ30052),長沙市自然科學(xué)基金(kq2208285)
詳細(xì)信息
    作者簡介:

    侯斐斐:女,講師,研究方向?yàn)樘降乩走_(dá)圖像解譯、無損探測、深度學(xué)習(xí)、目標(biāo)識(shí)別

    彭應(yīng)昊:男,本科生,研究方向?yàn)閳D像識(shí)別與深度學(xué)習(xí)

    董健:男,教授,研究方向?yàn)樘炀€、雷達(dá)信號(hào)處理、機(jī)器學(xué)習(xí)算法及其電磁應(yīng)用

    銀雪:女,本科生,研究方向?yàn)橛?jì)算機(jī)視覺與目標(biāo)識(shí)別

    通訊作者:

    董健 dongjian@csu.edu.cn

  • 中圖分類號(hào): TN957.51; TP391

Ground Penetrating Radar Hyperbolic Keypoint Detection and Object Localization Based on Dual YOLOv8-pose Model

Funds: The National Natural Science Foundation of China (62406346), Hunan Provincial Natural Science Foundation (2022J30052), Changsha Natural Science Foundation (kq2208285)
  • 摘要: 探地雷達(dá)(GPR)是一種可用于地下目標(biāo)識(shí)別的無損檢測方法。針對現(xiàn)有方法存在不同尺度目標(biāo)兼容性差、復(fù)雜圖像識(shí)別難度大、無法精確定位等問題,該文提出一種基于雙重YOLO姿態(tài)模型(YOLOv8-pose)的GPR雙曲線關(guān)鍵點(diǎn)檢測與目標(biāo)定位,命名為雙重YOLO關(guān)鍵點(diǎn)定位方法(DYKL),用于地下目標(biāo)的檢測與精確定位。所提模型架構(gòu)包含兩個(gè)階段:首先,第1階段是基于YOLOv8-pose模型的GPR目標(biāo)檢測,以確定候選目標(biāo)的位置;接著,第1階段的部分訓(xùn)練權(quán)重被共享并傳遞到第2階段,后者以此為基礎(chǔ)繼續(xù)訓(xùn)練YOLOv8-pose網(wǎng)絡(luò),用于候選目標(biāo)特征的關(guān)鍵點(diǎn)檢測及獲取,從而實(shí)現(xiàn)地下目標(biāo)的自動(dòng)化定位。通過與級(jí)聯(lián)區(qū)域卷積網(wǎng)絡(luò)(Cascade R-CNN)、 更快的區(qū)域卷積網(wǎng)絡(luò)(Faster R-CNN)、 實(shí)時(shí)對象檢測模型(RTMDet)以及“你只看一次”人臉模型(YOLOv7-face)4種先進(jìn)的深度模型進(jìn)行比較,所提模型平均識(shí)別準(zhǔn)確率達(dá)到98.8%,性能優(yōu)于其他模型。結(jié)果表明所提DYKL模型具有較高的識(shí)別準(zhǔn)確性與較強(qiáng)的魯棒性,可以為地下目標(biāo)的精確定位提供參考。
  • 圖  1  算法整體框架

    圖  2  YOLOv8-pose網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  3  關(guān)鍵點(diǎn)標(biāo)注

    圖  4  2維坐標(biāo)系轉(zhuǎn)換

    圖  5  不同階段下模型訓(xùn)練過程的損失曲線

    圖  6  DYKL模型檢測結(jié)果

    圖  7  不同關(guān)鍵點(diǎn)檢測算法在仿真圖像上的性能對比

    圖  8  不同關(guān)鍵點(diǎn)檢測算法在實(shí)測圖像數(shù)據(jù)上的對比結(jié)果

    圖  9  與傳統(tǒng)圖像處理算法在仿真圖像上的性能對比

    表  1  GPR目標(biāo)自動(dòng)識(shí)別算法

    文獻(xiàn) 模型類別 算法 檢測目標(biāo) 數(shù)據(jù)集 性能指標(biāo)(%)
    蘭天等人[34] 圖像學(xué)目標(biāo)檢測 基于擬合誤差消除雙曲線識(shí)別模型 / 實(shí)測圖像和仿真圖像 /
    Pham等人[16] 兩階段目標(biāo)檢測 Faster R-CNN / 50張仿真圖像和100張實(shí)測圖像 /
    Cui等人[18] 兩階段目標(biāo)檢測 Faster R-CNN 地層界面 / 檢測框Pre= 98.3
    Zhao等人[20] 兩階段實(shí)例分割 Mask R-CNN 隧道襯砌上缺陷位置 / 檢測框Pre=96.1
    掩模預(yù)測Pre=95.6
    Hou等人[21] 兩階段實(shí)例分割 基于MS—RCNN定制錨定方案 樹根 95張實(shí)測圖像 掩膜預(yù)測AP50=38.6
    Wang等人[26] 單階段目標(biāo)檢測 SSD引入FPN特征融合層網(wǎng)絡(luò)和廣義交并集損失 / 1 170張仿真圖像 檢測框Pre=92.0
    檢測框Rec=90.3
    Qiu等人[28] 單階段目標(biāo)檢測 YOLOv5 鐵實(shí)驗(yàn)材料 412張實(shí)測圖像 檢測框Pre=82.6
    檢測框Rec=68.0
    Hu等人[29] 單階段目標(biāo)檢測 YOLOv5引入注意力機(jī)制 地下缺陷 3 256張圖像包含實(shí)測圖像和仿真圖像 檢測框mAP=85.4
    胡榮明等人[30] 單階段目標(biāo)檢測 YOLOv7 隧道襯砌病害 506張仿真圖像和84張實(shí)測圖像 檢測框Pre=97.9
    檢測框Rec=90.6
    Wang等人[31] 單階段目標(biāo)檢測 YOLOv8引入CBAM注意力機(jī)制 地下缺陷 837張實(shí)測圖像 檢測框mAP50=90.8
    檢測框F1=88.3
    Li等人[32] 單階段關(guān)鍵點(diǎn)檢測 YOLOv4引入關(guān)鍵點(diǎn)回歸并增加Wing損失函數(shù) 植物根 1 000張仿真圖像和2 320張實(shí)測圖像 檢測框Pre=94.0
    檢測框Rec=96.7
    方濤濤等人[33] 單階段關(guān)鍵點(diǎn)檢測 YOLOv8引入 CBAM 注意力機(jī)制和關(guān)鍵點(diǎn)回歸 地下管線 545張實(shí)測圖像和795張仿真圖像 定位水平誤差8.6
    定位深度誤差1.8
    下載: 導(dǎo)出CSV

    表  2  模型輸入圖像的數(shù)量與尺寸

    參數(shù)目標(biāo)檢測階段關(guān)鍵點(diǎn)檢測階段
    批量大小3264
    圖像尺寸640×640128×128
    下載: 導(dǎo)出CSV

    表  3  各種目標(biāo)檢測算法的平均精度與平均召回率

    模型mAP50↑mAP50-95↑Av_Recall↑
    DYKL0.9880.6420.960
    Cascade[40]0.9620.5970.675
    Faster R-CNN[17]0.9400.5460.638
    RTMDet[41]0.9050.5350.719
    下載: 導(dǎo)出CSV
  • [1] LI Jing, LIU Cai, ZENG Zhaofa, et al. Gpr signal denoising and target extraction with the ceemd method[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1615–1619. doi: 10.1109/lgrs.2015.2415736.
    [2] 李洪麗, 鹿琪. 探地雷達(dá)在LNAPL污染土壤探測中的應(yīng)用進(jìn)展研究[J]. 地球物理學(xué)進(jìn)展, 2020, 35(3): 1141–1148. doi: 10.6038/pg2020DD0414.

    LI Hongli and LU Qi. Progress in application of ground penetrating radar in LNAPL contaminated soil detection of LNAPL[J]. Progress in Geophysics, 2020, 35(3): 1141–1148. doi: 10.6038/pg2020DD0414.
    [3] 尹德, 葉盛波, 張經(jīng)緯, 等. 公路結(jié)構(gòu)和介電特性對探地雷達(dá)反射回波的影響研究[J]. 電子測量技術(shù), 2018, 41(5): 51–56. doi: 10.19651/j.cnki.emt.1700792.

    YIN De, YE Shengbo, ZHANG Jingwei, et al. Study on the effect of highway structure and dielectric properties on GPR echo[J]. Electronic Measurement Technology, 2018, 41(5): 51–56. doi: 10.19651/j.cnki.emt.1700792.
    [4] 王韻, 王紅雨, 常留成, 等. 基于探地雷達(dá)的水庫壩前淤積土沉積規(guī)律研究[J]. 水土保持學(xué)報(bào), 2021, 35(4): 152–158. doi: 10.13870/j.cnki.stbcxb.2021.04.021.

    WANG Yun, WANG Hongyu, CHANG Liucheng, et al. Study on sedimentation regulation of silted soil in the front of reservoir dam based on GPR[J]. Journal of Soil and Water Conservation, 2021, 35(4): 152–158. doi: 10.13870/j.cnki.stbcxb.2021.04.021.
    [5] 覃譚, 趙永輝, 林國聰, 等. 探地雷達(dá)在上林湖越窯遺址水下考古中的應(yīng)用[J]. 物探與化探, 2018, 42(3): 624–630. doi: 10.11720/wtyht.2018.1290.

    QIN Tan, ZHAO Yonghui, LIN Guocong, et al. The application of GPR to underwater archaeological investigation of Shanglinhu Yue kiln relics[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 624–630. doi: 10.11720/wtyht.2018.1290.
    [6] 胡進(jìn)峰, 周正歐. 淺地層探地雷達(dá)目標(biāo)探測和定位新方法[J]. 儀器儀表學(xué)報(bào), 2006, 27(4): 371–375. doi: 10.3321/j.issn:0254-3087.2006.04.010.

    HU Jinfeng and ZHOU Zhengou. Target detection and orientation in sub-surface penetrating radar data[J]. Chinese Journal of Scientific Instrument, 2006, 27(4): 371–375. doi: 10.3321/j.issn:0254-3087.2006.04.010.
    [7] LIU Yayu, WANG Meiqing, and CAI Qiurong. The target detection for GPR images based on curve fitting[C]. The 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010: 2876–2879. doi: 10.1109/CISP.2010.5646818.
    [8] LI Wentao, CUI Xihong, GUO Li, et al. Tree root automatic recognition in ground penetrating radar profiles based on randomized hough transform[J]. Remote Sensing, 2016, 8(5): 430. doi: 10.3390/rs8050430.
    [9] MAAS C and SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125. doi: 10.1016/j.cageo.2013.04.012.
    [10] DOU Qingxu, WEI Lijun, MAGEE D R, et al. Real-time hyperbola recognition and fitting in GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 51–62. doi: 10.1109/tgrs.2016.2592679.
    [11] PATSIA O, GIANNOPOULOS A, and GIANNAKIS I. Background removal, velocity estimation, and reverse-time migration: A complete GPR processing pipeline based on machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 2003311. doi: 10.1109/tgrs.2023.3300276.
    [12] ZHANG Xiaowei, XUE Fangxiu, WANG Zepeng, et al. A novel method of hyperbola recognition in ground penetrating radar (GPR) B-scan image for tree roots detection[J]. Forests, 2021, 12(8): 1019. doi: 10.3390/f12081019.
    [13] LIU Bin, ZHANG Jiaqi, LEI Ming, et al. Simultaneous tunnel defects and lining thickness identification based on multi-tasks deep neural network from ground penetrating radar images[J]. Automation in Construction, 2023, 145: 104633. doi: 10.1016/j.autcon.2022.104633.
    [14] XIANG Deliang, PAN Xiaoyu, DING Huaiyue, et al. Two-stage registration of SAR images with large distortion based on superpixel segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5211115. doi: 10.1109/tgrs.2024.3392971.
    [15] 倪志康, 葉盛波, 史城, 等. 一種深度學(xué)習(xí)輔助的探地雷達(dá)定位方法[J]. 電子與信息學(xué)報(bào), 2022, 44(4): 1265–1273. doi: 10.11999/JEIT211072.

    NI Zhikang, YE Shengbo, SHI Cheng, et al. A deep learning assisted ground penetrating radar localization method[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1265–1273. doi: 10.11999/JEIT211072.
    [16] PHAM M T and LEFèVRE S. Buried object detection from B-scan ground penetrating radar data using faster-RCNN[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6804–6807. doi: 10.1109/IGARSS.2018.8517683.
    [17] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/tpami.2016.2577031.
    [18] CUI Fan, NING Muwei, SHEN Jiawei, et al. Automatic recognition and tracking of highway layer-interface using faster R-CNN[J]. Journal of Applied Geophysics, 2022, 196: 104477. doi: 10.1016/j.jappgeo.2021.104477.
    [19] 來鵬飛, 李偉, 高堯, 等. 基于改進(jìn)Cascade R-CNN的探地雷達(dá)管線目標(biāo)檢測[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用, 2023, 32(2): 102–110. doi: 10.15888/j.cnki.csa.008945.

    LAI Pengfei, LI Wei, GAO Yao, et al. GPR pipeline target detection based on improved Cascade R-CNN[J]. Computer Systems & Applications, 2023, 32(2): 102–110. doi: 10.15888/j.cnki.csa.008945.
    [20] ZHAO Shuai, SHADABFAR M, ZHANG Dongming, et al. Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings[J]. Structural Control and Health Monitoring, 2021, 28(6): e2732. doi: 10.1002/stc.2732.
    [21] HOU Feifei, LEI Wentai, LI Shuai, et al. Deep learning-based subsurface target detection from GPR scans[J]. IEEE Sensors Journal, 2021, 21(6): 8161–8171. doi: 10.1109/jsen.2021.3050262.
    [22] HUANG Jian, YANG Xi, ZHOU Feng, et al. A deep learning framework based on improved self-supervised learning for ground-penetrating radar tunnel lining inspection[J]. Computer-Aided Civil and Infrastructure Engineering, 2024, 39(6): 814–833. doi: 10.1111/mice.13042.
    [23] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [24] LIU Hai, LIN Chunxu, CUI Jie, et al. Detection and localization of rebar in concrete by deep learning using ground penetrating radar[J]. Automation in Construction, 2020, 118: 103279. doi: 10.1016/j.autcon.2020.103279.
    [25] 孫學(xué)超, 張其道, 尹達(dá), 等. 基于YOLOv5s的探地雷達(dá)圖像目標(biāo)檢測研究[J]. 交通世界, 2023(7): 3–6. doi: 10.16248/j.cnki.11-3723/u.2023.07.036.

    SUN Xuechao, ZHANG Qidao, YIN Da, et al. Research on ground penetrating radar image target detection based on YOLOv5s[J]. World of Transportation, 2023(7): 3–6. doi: 10.16248/j.cnki.11-3723/u.2023.07.036.
    [26] WANG Zhen, LAN Tian, QU Xiaodong, et al. Improved SSD framework for automatic subsurface object indentification for gpr data processing[C]. The 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 2078–2081. doi: 10.1109/Radar53847.2021.10028347.
    [27] 覃紫馨, 姜彥南, 徐立, 等. 基于YOLO算法的探地雷達(dá)道路圖像異常自動(dòng)檢測[J]. 科學(xué)技術(shù)與工程, 2023, 23(27): 11505–11512. doi: 10.3969/j.issn.1671-1815.2023.27.004.

    QIN Zixin, JIANG Yannan, XU Li, et al. Automatic detection of anomalies in GPR images based on YOLO algorithm[J]. Science Technology and Engineering, 2023, 23(27): 11505–11512. doi: 10.3969/j.issn.1671-1815.2023.27.004.
    [28] QIU Zhi, ZHAO Zuoxi, CHEN Shaoji, et al. Application of an improved YOLOv5 algorithm in real-time detection of foreign objects by ground penetrating radar[J]. Remote Sensing, 2022, 14(8): 1895. doi: 10.3390/rs14081895.
    [29] HU Haobang, FANG Hongyuan, WANG Niannian, et al. Defects identification and location of underground space for ground penetrating radar based on deep learning[J]. Tunnelling and Underground Space Technology, 2023, 140: 105278. doi: 10.1016/j.tust.2023.105278.
    [30] 胡榮明, 李鑫, 競霞, 等. YOLOv7在探地雷達(dá)B-Scan圖像解譯中的應(yīng)用[J]. 測繪通報(bào), 2023(8): 29–33. doi: 10.13474/j.cnki.11-2246.2023.0227.

    HU Rongming, LI Xin, JING Xia, et al. Application of YOLOv7 in GPR B-Scan image interpretation[J]. Bulletin of Surveying and Mapping, 2023(8): 29–33. doi: 10.13474/j.cnki.11-2246.2023.0227.
    [31] WANG Niannian, ZHANG Zexi, HU Haobang, et al. Underground defects detection based on GPR by fusing simple linear iterative clustering phash (SLIC-Phash) and convolutional block attention module (CBAM)-YOLOv8[J]. IEEE Access, 2024, 12: 25888–25905. doi: 10.1109/access.2024.3365959.
    [32] LI Shupeng, CUI Xihong, GUO Li, et al. Enhanced automatic root recognition and localization in GPR images through a YOLOv4-based deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114314. doi: 10.1109/tgrs.2022.3181202.
    [33] 方濤濤, 王池社, 王潔, 等. 基于YOLO v8n的探地雷達(dá)圖像管線定位方法[J]. 國外電子測量技術(shù), 2023, 42(11): 170–177. doi: 10.19652/j.cnki.femt.2305179.

    FANG Taotao, WANG Chishe, WANG Jie, et al. Ground penetrating radar image pipeline location based on YOLO v8n[J]. Foreign Electronic Measurement Technology, 2023, 42(11): 170–177. doi: 10.19652/j.cnki.femt.2305179.
    [34] 蘭天, 趙毅, 陳宏暢, 等. 基于擬合誤差消除的探地雷達(dá)圖像魯棒雙曲線識(shí)別模型[J]. 信號(hào)處理, 2023, 39(9): 1699–1710. doi: 10.16798/j.issn.1003-0530.2023.09.014.

    LAN Tian, ZHAO Yi, CHEN Hongchang, et al. A robust hyperbola recognition model with fitting-errors-based eliminating in GPR B-scan image[J]. Journal of Signal Processing, 2023, 39(9): 1699–1710. doi: 10.16798/j.issn.1003-0530.2023.09.014.
    [35] WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
    [36] ZHOU Chuande, LU Zhenyu, LV Zhongliang, et al. Metal surface defect detection based on improved YOLOv5[J]. Scientific Reports, 2023, 13(1): 20803. doi: 10.1038/s41598-023-47716-2.
    [37] 竇智, 高浩然, 劉國奇, 等. 輕量化YOLOv8的小樣本鋼板缺陷檢測算法[J]. 計(jì)算機(jī)工程與應(yīng)用, 2024, 60(9): 90–100. doi: 10.3778/j.issn.1002-8331.2311-0070.

    DOU Zhi, GAO Haoran, LIU Guoqi, et al. Small sample steel plate defect detection algorithm of lightweight YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 90–100. doi: 10.3778/j.issn.1002-8331.2311-0070.
    [38] XIONG Hongqiang, LI Jing, LI Zhilian, et al. GPR-GAN: A ground-penetrating radar data generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5200114. doi: 10.1109/TGRS.2023.3337172.
    [39] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1-3): 157–173. doi: 10.1007/s11263-007-0090-8.
    [40] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483–1498. doi: 10.1109/tpami.2019.2956516.
    [41] LYU Chengqi, ZHANG Wenwei, HUANG Haian, et al. RTMDet: An empirical study of designing real-time object detectors[J]. arXiv preprint arXiv: 2212.07784, 2022. doi: 10.48550/arXiv.2212.07784.
    [42] BOUSMAHA R, LAOUEDJ S, AGGOUNE L, et al. YOLOv7-face: A real-time face detector[C]. The 2023 International Conference on Networking and Advanced Systems (ICNAS), Algiers, Algeria, 2023: 1–6. doi: 10.1109/ICNAS59892.2023.10330470.
  • 加載中
圖(9) / 表(3)
計(jì)量
  • 文章訪問數(shù):  611
  • HTML全文瀏覽量:  260
  • PDF下載量:  86
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-09-12
  • 網(wǎng)絡(luò)出版日期:  2024-09-19
  • 刊出日期:  2024-11-10

目錄

    /

    返回文章
    返回