一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

有限碼長域下針對多用戶大規(guī)模MIMO系統(tǒng)速率優(yōu)化的高效功率分配算法

胡鈺林 肖志成 徐浩

胡鈺林, 肖志成, 徐浩. 有限碼長域下針對多用戶大規(guī)模MIMO系統(tǒng)速率優(yōu)化的高效功率分配算法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 35-47. doi: 10.11999/JEIT240241
引用本文: 胡鈺林, 肖志成, 徐浩. 有限碼長域下針對多用戶大規(guī)模MIMO系統(tǒng)速率優(yōu)化的高效功率分配算法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 35-47. doi: 10.11999/JEIT240241
HU Yulin, XIAO Zhicheng, XU Hao. Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology, 2025, 47(1): 35-47. doi: 10.11999/JEIT240241
Citation: HU Yulin, XIAO Zhicheng, XU Hao. Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology, 2025, 47(1): 35-47. doi: 10.11999/JEIT240241

有限碼長域下針對多用戶大規(guī)模MIMO系統(tǒng)速率優(yōu)化的高效功率分配算法

doi: 10.11999/JEIT240241
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計(jì)劃(2023YFE0206600)
詳細(xì)信息
    作者簡介:

    胡鈺林:男,教授,博士生導(dǎo)師,研究方向?yàn)楣I(yè)物聯(lián)網(wǎng)、高可靠低時(shí)延通信、無人機(jī)通信、移動(dòng)邊緣計(jì)算等

    肖志成:男,碩士生,研究方向?yàn)楦呖煽康蜁r(shí)延通信、多用戶MIMO

    徐浩:男,碩士生,研究方向?yàn)楦呖煽康蜁r(shí)延通信、移動(dòng)邊緣計(jì)算

    通訊作者:

    胡鈺林 yulin.hu@whu.edu.cn

  • 中圖分類號: TN929.5

Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime

Funds: The National Key R&D Plan (2023YFE0206600)
  • 摘要: 第六代(6G)移動(dòng)通信網(wǎng)絡(luò)需要為大規(guī)模節(jié)點(diǎn)提供高可靠低時(shí)延通信(URLLC)服務(wù)。為此,該文針對多用戶大規(guī)模多輸入多輸出(MIMO)技術(shù)輔助的URLLC下行通信場景,基于有限碼長( FBL)域理論表征系統(tǒng)性能,以用戶速率公平性為目標(biāo),提出一種高效的功率分配算法。具體而言,該文首先針對傳統(tǒng)MIMO中基于全局奇異值分解(SVD)的線性預(yù)編碼方案復(fù)雜度高、不能兼顧用戶公平性等問題,設(shè)計(jì)基于局部SVD的預(yù)編碼方案,以相對較低的復(fù)雜度實(shí)現(xiàn)對MIMO用戶間干擾和用戶內(nèi)干擾的有效抑制。其次,該文以功率分配因子為優(yōu)化變量、以最大化最小用戶速率(MMR)為目標(biāo)構(gòu)建優(yōu)化問題。為解決所構(gòu)建的高維變量耦合非凸問題,該文通過引入輔助變量、分段McCormick包絡(luò)將目標(biāo)函數(shù)中香農(nóng)容量相關(guān)項(xiàng)凸松弛處理,實(shí)現(xiàn)MMR問題重構(gòu)。進(jìn)而該文提出基于連續(xù)凸近似(SCA)的優(yōu)化算法有效求解MMR問題。仿真結(jié)果驗(yàn)證了所提優(yōu)化算法的收斂性與準(zhǔn)確性,同時(shí)也表明所提優(yōu)化方案相比于現(xiàn)有方案在系統(tǒng)MMR性能和魯棒性上均具有優(yōu)勢。
  • 圖  1  一種多用戶大規(guī)模MIMO輔助的URLLC下行鏈路模型

    圖  2  預(yù)編碼運(yùn)行時(shí)間

    圖  3  次優(yōu)解性能評估,$M = 3$, ${K_g} = 4(1 \le g \le M)$

    圖  4  MMR/總吞吐量變化,$M = 6$,${K_g} = 32(1 \le g \le M)$

    圖  5  最大最小香農(nóng)容量隨收發(fā)端天線數(shù)變化

    圖  6  最大化最小可達(dá)速率隨碼長的變化

    圖  7  最大化最小可達(dá)速率隨平均功率的變化,$N = 256$

    圖  8  最大最小可達(dá)速率隨收發(fā)天線數(shù)變化

    圖  9  最大化最小可達(dá)速率隨用戶數(shù)的變化

    1  基于連續(xù)凸近似的MMR功率分配算法

     (1) 初始化功率分配因子向量${{\boldsymbol{\beta}} ^{(0)}}$,設(shè)置閾值$ \varepsilon$;
     (2) 初始化迭代次數(shù)$m = 0$,根據(jù)${{\boldsymbol{\beta}} ^{(0)}}$計(jì)算${\gamma _{gk}}$,得到$\gamma _{gk}^{(0)}$;
     (3) 根據(jù)${\boldsymbol{\beta}} _{gk}^{^{(0)}}$,$\gamma _{gk}^{(0)}$求解凸子優(yōu)化問題(SP1.3),得到$\gamma _{gk}^{(1)}$, ${\boldsymbol{\beta}} _{gk}^{^{(1)}}$,
     $R_{\min }^{(1)}\,$;
     (4) for $m = 2,3, \cdots $
     (5)  根據(jù)${\boldsymbol{\beta}} _{gk}^{^{(m - 1)}}$,$\gamma _{gk}^{(m - 1)}$求解優(yōu)化問題(SP1.3),得到$\gamma _{gk}^{(m)}$,
        ${\boldsymbol{\beta}} _{gk}^{^{(m)}}$, $R_{\min }^{(m)}\,$;
     (6)  if $\left\| R_{\min}^{(m)} -R_{\min}^{(m-1)} \right\| \ge \varepsilon $, then 更新$m \leftarrow m + 1$再次進(jìn)
        入步驟5并繼續(xù)計(jì)算;
     (7)   else 根據(jù)${{\boldsymbol{\beta}} ^{(m)}}$計(jì)算目標(biāo)函數(shù)$ {{\boldsymbol{R}}}_{\mathrm{min}}({\boldsymbol{\beta}} ) $,得到問題
         (OP1)的有效解,終止迭代并返回結(jié)果;
     (8) end
    下載: 導(dǎo)出CSV
  • [1] HAMIDI-SEPEHR F, SAJADIEH M, PANTELEEV S, et al. 5G URLLC: Evolution of high-performance wireless networking for industrial automation[J]. IEEE Communications Standards Magazine, 2021, 5(2): 132–140. doi: 10.1109/MCOMSTD.001.2000035.
    [2] International Telecommunication Union. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond[M]. Geneva: Electronic Publication, 2015.
    [3] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [4] 袁偉杰, 李雙洋, 種若汐, 等. 面向6G物聯(lián)網(wǎng)的分布式譯碼技術(shù)[J]. 電子與信息學(xué)報(bào), 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.

    YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G internet-of-things networks[J]. Journal of Electronics & Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.
    [5] 黃崇文, 季然, 魏麗, 等. 面向全息MIMO 6G通信的電磁信道建模理論與方法[J]. 電子與信息學(xué)報(bào), 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.

    HUANG Chongwen, JI Ran, WEI Li, et al. Electromagnetic channel modeling theory and approaches for holographic MIMO wireless communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
    [6] MA Wenyan, ZHU Lipeng, and ZHANG Rui. MIMO capacity characterization for movable antenna systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3392–3407. doi: 10.1109/TWC.2023.3307696.
    [7] CHI Yuhao, LIU Lei, SONG Lei, et al. Constrained capacity optimal generalized multi-user MIMO: A theoretical and practical framework[J]. IEEE Transactions on Communications, 2022, 70(12): 8086–8104. doi: 10.1109/TCOMM.2022.3207813.
    [8] LV Zhihan, QIAO Liang, and YOU I. 6G-enabled network in box for internet of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5275–5282. doi: 10.1109/TITS.2020.3034817.
    [9] WANG Bin, XU Ke, ZHENG Shilian, et al. A deep learning-based intelligent receiver for improving the reliability of the MIMO wireless communication system[J]. IEEE Transactions on Reliability, 2022, 71(2): 1104–1115. doi: 10.1109/TR.2022.3148114.
    [10] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [11] YANG Wei, DURISI G, KOCH T, et al. Quasi-static multiple-antenna fading channels at finite blocklength[J]. IEEE Transactions on Information Theory, 2014, 60(7): 4232–4265. doi: 10.1109/TIT.2014.2318726.
    [12] ZHU Yao, HU Yulin, YUAN Xiaopeng, et al. Joint convexity of error probability in blocklength and transmit power in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2409–2423. doi: 10.1109/TWC.2022.3211454.
    [13] ZHAO Linlin, YANG Shaoshi, CHI Xuefen, et al. Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1407–1420. doi: 10.1109/TWC.2021.3104043.
    [14] PENG Qihao, REN Hong, PAN Cunhua, et al. Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory[J]. IEEE Transactions on Communications, 2023, 71(1): 553–568. doi: 10.1109/TCOMM.2022.3224502.
    [15] HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
    [16] FANG Hao, HU Han, ZHANG Yao, et al. Achievable rate analysis and power optimization for cell-free massive MIMO URLLC systems over aging and correlated channels[J]. IEEE Internet of Things Journal, 2024, 11(14): 25239–25250. doi: 10.1109/JIOT.2024.3392298.
    [17] SHENG Zhichao, TUAN H D, NASIR A, et al. Power allocation for energy efficiency and secrecy of wireless interference networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3737–3751. doi: 10.1109/TWC.2018.2815626.
    [18] JIANG Hao, ZHANG Zaichen, WU Liang, et al. A non-stationary geometry-based scattering vehicle-to-vehicle MIMO channel model[J]. IEEE Communications Letters, 2018, 22(7): 1510–1513. doi: 10.1109/LCOMM.2018.2834366.
    [19] HUANG Jie, WANG Chengxiang, CHANG Hengtai, et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2010–2025. doi: 10.1109/JSAC.2020.3000839.
    [20] WANG Jun, WANG Chengxiang, HUANG Jie, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1576–1589. doi: 10.1109/JSAC.2021.3071850.
    [21] YANG Guanghua, ZHANG Huan, SHI Zheng, et al. Asymptotic outage analysis of spatially correlated rayleigh MIMO channels[J]. IEEE Transactions on Broadcasting, 2021, 67(1): 263–278. doi: 10.1109/TBC.2020.3028346.
    [22] JOUNG H, JO H S, MUN C, et al. Capacity loss due to polarization-mismatch and space-correlation on MISO channel[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2124–2136. doi: 10.1109/TWC.2014.031314.131079.
    [23] LIU An, LAU V K N, and KANANIAN B. Stochastic successive convex approximation for non-convex constrained stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4189–4203. doi: 10.1109/TSP.2019.2925601.
    [24] ZHAN Jinlong and DONG Xiaodai. Interference cancellation aided hybrid beamforming for mmwave multi-user massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2322–2336. doi: 10.1109/TVT.2021.3057547.
    [25] LONG Wenxuan, CHEN Rui, MORETTI M, et al. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul[J]. IEEE Transactions on Broadcasting, 2021, 67(4): 879–893. doi: 10.1109/TBC.2021.3081869.
    [26] FONTENLA-ROMERO O, PéREZ-SáNCHEZ B, and GUIJARRO-BERDI?AS B. LANN-SVD: A non-iterative SVD-based learning algorithm for one-layer neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3900–3905. doi: 10.1109/TNNLS.2017.2738118.
    [27] KOLODZIEJ S, CASTRO P M, and GROSSMANN I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039–1063. doi: 10.1007/s10898-012-0022-1.
    [28] DE ASSIS L S, CAMPONOGARA E, ZIMBERG B, et al. A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil terminal[J]. Computers & Chemical Engineering, 2017, 106: 309–321. doi: 10.1016/j.compchemeng.2017.06.012.
    [29] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–95.
    [30] NASIR A A, TUAN H D, NGO H Q, et al. Cell-free massive MIMO in the short blocklength regime for URLLC[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5861–5871. doi: 10.1109/TWC.2021.3070836.
  • 加載中
圖(9) / 表(1)
計(jì)量
  • 文章訪問數(shù):  232
  • HTML全文瀏覽量:  62
  • PDF下載量:  38
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-12-09
  • 網(wǎng)絡(luò)出版日期:  2024-12-12
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回