復(fù)值Hopfield神經(jīng)網(wǎng)絡(luò)的信號(hào)盲檢測一步計(jì)算電路
doi: 10.11999/JEIT240224
-
湖南大學(xué)信息科學(xué)與工程學(xué)院 長沙 410082
One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network
-
College of Information Science and Engineering, Hunan University, Changsha 410082, China
-
摘要: 信號(hào)盲檢測在大規(guī)模通信網(wǎng)絡(luò)中具有重要的意義并得到了廣泛的應(yīng)用,如何快速得到信號(hào)盲檢測結(jié)果是新一代實(shí)時(shí)通信網(wǎng)絡(luò)的迫切需求。為此,該文從模擬電路的角度設(shè)計(jì)了一種能加速信號(hào)盲檢測的復(fù)值Hopfield神經(jīng)網(wǎng)絡(luò)(CHNN)電路,該電路可一步完成大規(guī)模并行計(jì)算,提高信號(hào)盲檢測速度,同時(shí)該電路可以通過調(diào)整憶阻器的電導(dǎo)和輸入電壓來實(shí)現(xiàn)可編程功能。Pspice仿真結(jié)果表明,該電路的計(jì)算精度可達(dá)99%以上,運(yùn)行時(shí)間比Matlab軟件仿真快3個(gè)數(shù)量級(jí),此外,該電路具有良好的魯棒性,即使在20%的噪聲干擾下,仍能保持99%以上的計(jì)算精度。
-
關(guān)鍵詞:
- 電路設(shè)計(jì) /
- 憶阻器 /
- 復(fù)值Hopfield神經(jīng)網(wǎng)絡(luò) /
- 信號(hào)盲檢測
Abstract: Blind signal detection is of great significance in large-scale communication networks and has been widely used. How to quickly obtain blind signal detection results is an urgent need for the new generation of real-time communication networks. Considering this demand, a Complex-valued Hopfield Neural Network (CHNN) circuit is designed that can accelerate blind signal detection from an analog circuit perspective, the proposed circuit can accelerate the blind signal detection by rapidly performing massively parallel calculation in one step. At the same time, the circuit can be programmable by adjusting the conductance and input voltage of the memristor. The Pspice simulation results show that the computing accuracy of the proposed circuit can exceed 99%. Compared with Matlab software simulation, the proposed circuit is three orders of magnitude faster in terms of computing time. And the accuracy can be maintained at more than 99% even under the interference of 20% noise. -
表 1 電路和軟件計(jì)算時(shí)間比較(ms)
輸入信號(hào)數(shù)量 計(jì)算時(shí)間 Pspice Matlab 5 階 0.001 9.5 10 階 0.03 10.8 20 階 0.04 11.2 40 階 0.07 13.3 80 階 0.16 15.2 下載: 導(dǎo)出CSV
表 2 不同硬件的計(jì)算時(shí)間
下載: 導(dǎo)出CSV
-
[1] SATO Y. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Transactions on Communications, 1975, 23(6): 679–682. doi: 10.1109/TCOM.1975.1092854. [2] TONG Lang, XU Guanghan, and KAILATH T. Blind identification and equalization based on second-order statistics: A time domain approach[J]. IEEE Transactions on Information Theory, 1994, 40(2): 340–349. doi: 10.1109/18.312157. [3] LI Jin, FENG Dazheng, and LI Bingbing. Space-time blind equalization of dispersive MIMO systems driven by QAM signals[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4136–4148. doi: 10.1109/TVT.2018.2790432. [4] HU Rong, YU Shujuan, ZHANG Yun, et al. WSN blind detection based on SOS[C]. The 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014: 5763–5766. doi: 10.1109/WCICA.2014.7053704. [5] LV Zhisheng, FENG Bin, and TAN Li. An improved dual-mode blind equalization algorithm for QAM signals[C]. 2022 6th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 2022: 283–287. doi: 10.1109/ICRAS55217.2022.9842274. [6] BLOCHBERGER M, ELVANDER F, ALI R, et al. Distributed cross-relation-based frequency-domain blind system identification using online-admm[C]. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), Bamberg, Germany, 2022: 1–5. doi: 10.1109/IWAENC53105.2022.9914714. [7] YUAN Kang, ZHUO Junnan, GAO Wei, et al. Diffusion constant modulus algorithm for blind equalization[C]. 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 2022: 1–6. doi: 10.1109/ICSPCC55723.2022.9984630. [8] XIAO Ying and DONG Yuhua. Blind equalization based on neural network under LS criterion by gradient iteration algorithm[C]. 2009 Fifth International Conference on Natural Computation, Tianjian, China, 2009: 91–94. doi: 10.1109/ICNC.2009.134. [9] ZHANG Yun and ZHANG Zhiyong. Blind 8PSK signals detection using discrete complex-valued Hopfield network[C]. 2010 IEEE 12th International Conference on Communication Technology, Nanjing, China, 2010: 983–986. doi: 10.1109/ICCT.2010.5688787. [10] WU Jinwen, JIN Haihong, YU Shujuan, et al. A novel blind detection algorithm based on multi-clustering complex neural network[C]. Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2021: 1017–1021. doi: 10.1109/IMCEC51613.2021.9482354. [11] MEI Ruru, WANG Zhugang, and HU Wanru. Robust blind equalization algorithm using convolutional neural network[J]. IEEE Signal Processing Letters, 2022, 29: 1569–1573. doi: 10.1109/LSP.2022.3189319. [12] XIE Xihai, FAN Chenzhao, WANG Shuai, et al. Varible step size multi-layer neural network blind equalization algorithm[C]. 2022 4th International Conference on Natural Language Processing (ICNLP), Xi’an, China, 2022: 477–481. doi: 10.1109/ICNLP55136.2022.00087. [13] ZHANG Hui, GU M, JIANG Xudong, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 2021, 12(1): 457. doi: 10.1038/s41467-020-20719-7. [14] YU Yaning and ZHANG Ziye. State estimation for complex-valued inertial neural networks with multiple time delays[J]. Mathematics, 2022, 10(10): 1725. doi: 10.3390/math10101725. [15] HONG Qinghui, FU Haotian, LIU Yiyang, et al. In-memory computing circuit implementation of complex-valued hopfield neural network for efficient portrait restoration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3338–3351. doi: 10.1109/TCAD.2023.3242858. [16] NISHIKAWA I, IRITANI T, and SAKAKIBARA K. Improvements of the traffic signal control by complex-valued Hopfield networks[C]. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 2006: 459–464. doi: 10.1109/IJCNN.2006.246717. [17] 王雷敏, 程佳俊, 胡成, 等. 基于改進(jìn)的憶阻器在字符聯(lián)想記憶中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.WANG Leimin, CHENG Jiajun, HU Cheng, et al. Application of improved memristor in character associative memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709. [18] UYKAN Z. Shadow-Cuts minimization/maximization and complex Hopfield neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(3): 1096–1109. doi: 10.1109/TNNLS.2020.2980237. [19] HONG Qinghui, LI Ya, and WANG Xiaoping. Memristive continuous Hopfield neural network circuit for image restoration[J]. Neural Computing and Applications, 2020, 32(12): 8175–8185. doi: 10.1007/s00521-019-04305-7. [20] YAN Renao, HONG Qinghui, WANG Chunhua, et al. Multilayer memristive neural network circuit based on online learning for license plate detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(9): 3000–3011. doi: 10.1109/TCAD.2021.3121347. [21] 肖平旦, 洪慶輝, 杜四春, 等. 基于憶阻器的可編程矩陣行列式求解電路設(shè)計(jì)及應(yīng)用[J]. 中國科學(xué): 信息科學(xué), 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229.XIAO Pingdan, HONG Qinghui, DU Sichun, et al. Design and application of a programmable matrix determinant-solving circuit based on memristors[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229. [22] YI Qian. FPGA implementation of neural network accelerator[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 2018: 1903–1906. doi: 10.1109/IMCEC.2018.8469659. -