IP軟核硬件木馬圖譜特征分析檢測方法
doi: 10.11999/JEIT240219
-
1.
國防科技大學電子科學學院 長沙 410073
-
2.
國防科技大學計算機學院 長沙 410073
-
3.
國防科技大學信息通信學院 武漢 430035
Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan
-
1.
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
-
2.
College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
-
3.
College of Information and Communication, National University of Defense Technology, Wuhan 430035, China
-
摘要: 隨著集成電路技術的飛速發(fā)展,芯片在設計、生產(chǎn)和封裝過程中,很容易被惡意植入硬件木馬邏輯,當前IP軟核的安全檢測方法邏輯復雜、容易錯漏且無法對加密IP軟核進行檢測。該文利用非可控IP軟核與硬件木馬寄存器傳輸級(RTL)代碼灰度圖譜的特征差異,提出一種基于圖譜特征分析的IP軟核硬件木馬檢測方法,通過圖譜轉換和圖譜增強得到標準圖譜,利用紋理特征提取匹配算法實現(xiàn)硬件木馬檢測。實驗使用設計階段被植入7類典型木馬的功能邏輯單元為實驗對象,檢測結果顯示7類典型硬件木馬的檢測正確率均達到了90%以上,圖像增強后特征點匹配成功數(shù)量的平均增長率達到了13.24%,有效提高了硬件木馬檢測的效率。Abstract: With the rapid development of integrated circuit technology, chips are easily implanted with malicious hardware Trojan logic in the process of design, production and packaging. Current security detection methods for IP soft core are logically complex, prone to errors and omissions, and unable to detect encrypted IP soft core. The paper uses the feature differences of non-controllable IP soft core and hardware Trojan Register Transfer Level (RTL) code grayscale map, proposing a hardware Trojan detection method for IP soft cores based on graph feature analysis, through the map conversion and map enhancement to get the standard map, using the texture feature extraction matching algorithm to achieve hardware Trojan detection. The experimental subjects are functional logic units with seven types of typical Trojans implanted during the design phase, and the detection results show that the detection correct rate of seven types of typical hardware Trojans has reached more than 90%, and the average growth rate of the number of successful feature point matches after the image enhancement has reached 13.24%, effectively improving the effectiveness of hardware Trojan detection.
-
Key words:
- IP soft core /
- Hardware Trojan /
- Grayscale map /
- Texture feature /
- Detection algorithm
-
表 1 7種硬件木馬分類原理特點對照表
插入階段 抽象層次 激活機制 效果 物理特性 B19-T100 設計階段 門級 基于內(nèi)部時間的觸發(fā) 改變功能 緊密、功能性、布局相同 PIC16F84-T100 設計階段 寄存器傳輸級別 內(nèi)部條件觸發(fā) 服務拒絕 功能性 s35932-T100 設計階段 門級 內(nèi)部條件觸發(fā) 改變功能,泄露信息 功能性 AES-T100 設計階段 寄存器傳輸級別 始終激活 泄露信息 功能性 wb_conmax-T100 設計階段 門級 內(nèi)部條件觸發(fā) 改變功能,拒絕服務 功能性 BasicRSA-T100 設計階段 寄存器傳輸級別 外部用戶輸入觸發(fā) 泄露信息 功能性 RS232-T100 設計階段 寄存器傳輸級別 內(nèi)部條件觸發(fā) 拒絕服務 功能性 下載: 導出CSV
表 2 7種木馬圖譜圖像增強前后的圖譜特征提取匹配結果
木馬類型 圖像增強前 圖像增強后 特征點總數(shù) 匹配成功的數(shù)量 特征點總數(shù) 匹配成功的數(shù)量 B19-T100 46 44 50 48 PIC16F84-T100 6 6 6 6 s35932-T100 40 37 41 39 AES-T100 22 22 25 25 wb_conmax-T100 10 7 13 11 BasicRSA-T100 63 49 65 51 RS232-T100 51 30 52 31 下載: 導出CSV
表 3 BasicRSA-T100在寬度為25不同高度下的匹配結果
25 50 75 100 125 150 175 200 特征點總數(shù) 54 62 62 65 68 68 68 68 匹配成功的數(shù)量 27 37 47 51 61 52 52 52 匹配成功率(%) 50.00 59.68 75.81 78.46 89.71 76.47 76.47 76.47 下載: 導出CSV
表 4 BasicRSA-T100在高度為100不同寬度下的匹配結果
25 50 75 100 125 150 175 200 特征點總數(shù) 65 60 81 80 80 80 80 80 匹配成功的數(shù)量 51 44 65 67 67 67 67 67 匹配成功率(%) 78.46 73.33 80.25 83.75 83.75 83.75 83.75 83.75 下載: 導出CSV
-
[1] 楊達明, 黃姣英, 高成. 工藝偏差影響下硬件木馬檢測功率分析方法[J]. 計算機工程與應用, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.YANG Daming, HUANG Jiaoying, and GAO Cheng. Power analysis method of hardware Trojan detection considering process variation[J]. Computer Engineering and Applications, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197. [2] 劉志強, 張銘津, 池源, 等. 一種深度學習的硬件木馬檢測算法[J]. 西安電子科技大學學報, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.LIU Zhiqiang, ZHANG Mingjin, CHI Yuan, et al. Hardware Trojan detection algorithm based on deep learning[J]. Journal of Xidian University, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006. [3] 成祥, 李磊, 程偉. 基于RTL級硬件木馬的檢測方法[J]. 微電子學與計算機, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.CHENG Xiang, LI Lei, and CHENG Wei. A detection method of hardware Trojans based on RTL[J]. Microelectronics & Computer, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012. [4] SANKAR V and NIRMALA DEVI M. Efficient hardware Trojan detection using generic feature extraction and weighted ensemble method[C]. The ICACIT 2021 on Advanced Computing and Intelligent Technologies, Singapore, Singapore, 2022: 165–181. doi: 10.1007/978-981-16-2164-2_14. [5] 謝俊, 周慧忠, 厲小燕, 等. 基于旁路分析的集成電路芯片硬件木馬檢測分析[J]. 電子技術與軟件工程, 2022(18): 112–115.XIE Jun, ZHOU Huizhong, LI Xiaoyan, et al. Hardware Trojan detection and analysis of integrated circuit chips based on bypass analysis[J]. Electronic Technology and Software Engineering, 2022(18): 112–115. [6] 徐皓, 易茂祥, 金禮玉, 等. 電路分區(qū)自比較的硬件木馬檢測方法[J]. 合肥工業(yè)大學學報: 自然科學版, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.XU Hao, YI Maoxiang, JIN Liyu, et al. Hardware Trojan detection method based on circuit partition self-comparison[J]. Journal of Hefei University of Technology: Natural Science, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007. [7] 趙毅強, 李博文, 馬浩誠, 等. 基于混合特征分析的硬件木馬檢測方法[J]. 華中科技大學學報: 自然科學版, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.ZHAO Yiqiang, LI Bowen, MA Haocheng, et al. Hardware Trojan detection method based on combined features analysis[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501. [8] JOSE F, PRIYATHARISHINI M, and NIRMALA DEVI M. Hardware Trojan detection using deep learning-generative adversarial network and stacked auto encoder neural networks[C]. The ICT Analysis and Applications, Singapore, Singapore, 2022: 203–210. doi: 10.1007/978-981-16-5655-2_19. [9] 李林源, 徐金甫, 嚴迎建, 等. 基于多維特征的門級硬件木馬檢測技術[J]. 計算機工程與應用, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.LI Linyuan, XU Jinfu, YAN Yingjian, et al. Hardware Trojan detection for gate-level netlists based on multidimensional features[J]. Computer Engineering and Applications, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101. [10] 楊歡, 李海明. MLDet: 基于結構特征和XGBoost的硬件木馬檢測方法[J]. 計算機應用與軟件, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.YANG Huan and LI Haiming. MLDet: Hardware Trojan detection method based on structural features and XGBoost[J]. Computer Applications and Software, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045. [11] 史江義, 溫聰, 劉鴻瑾, 等. 基于圖神經(jīng)網(wǎng)絡的門級硬件木馬檢測方法[J]. 電子與信息學報, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.SHI Jiangyi, WEN Cong, LIU Hongjin, et al. Hardware Trojan detection for gate-level netlists based on graph neural network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201. [12] PAN Zhixin and MISHRA P. Hardware Trojan detection using side -channel analysis[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 123–140. doi: 10.1007/978-3-031-46479-9_6. [13] JYOTHI V and RAJENDRAN J. Hardware Trojan attacks in FPGA and protection approaches[M]. BHUNIA S and TEHRANIPOOR M. The Hardware Trojan War: Attacks, Myths, and Defenses. Cham: Springer, 2018: 345–368. doi: 10.1007/978-3-319-68511-3_14. [14] ABDELLATIF K M, CORNESSE C, FOURNIER J, et al. New partitioning approach for hardware Trojan detection using side-channel measurements[C]. Proceedings of the 12th International Symposium on Applied Reconfigurable Computing, Mangaratiba, Brazil, 2016: 171–182. doi: 10.1007/978-3-319-30481-6_14. [15] VINOD G, RAMESH S R, and NIRMALA DEVI M. Simulation based hardware Trojan detection using path delay analysis[M]. RANGANATHAN G, FERNANDO X, and ROCHA á. Inventive Communication and Computational Technologies. Singapore: Springer, 2022: 853–863. doi: 10.1007/978-981-19-4960-9_64. [16] NOZAWA K, HASEGAWA K, HIDANO S, et al. Adversarial examples for hardware-Trojan detection at gate-level netlists[C]. Proceedings of the ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE, and ADIoT on Computer Security, Luxembourg City, Luxembourg, 2020: 341–359. doi: 10.1007/978-3-030-42048-2_22. -