基于實值子空間線性變換的非均勻圓形陣列高效二維測向方法
doi: 10.11999/JEIT240188
-
1.
哈爾濱工業(yè)大學(xué)(威海)信息科學(xué)與工程學(xué)院 威海 264209
-
2.
哈爾濱工業(yè)大學(xué)電子與信息工程學(xué)院 哈爾濱 150001
-
3.
北京無線電測量研究所 北京 100854
Efficient 2-D Direction Finding Based on the Real-valued Subspace Linear Transformation with Nonuniform Circular Array
-
1.
School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai 264209, China
-
2.
School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
-
3.
Beijing Institute of Radio Measurement, Beijing 100854, China
-
摘要: 由于均勻圓陣(UCA)的陣列流型不具有范德蒙結(jié)構(gòu),通常采用模式空間方法構(gòu)造虛擬線性陣列,因此,UCA陣列下使用結(jié)構(gòu)變換已經(jīng)是2維測向的必要基本假設(shè)。該文通過對虛擬信號模型進(jìn)行特征分析,避免了線性陣列的結(jié)構(gòu)變換,提出一種適用于UCA和非均勻圓陣(NUCA)的實值高效2維測向方法。因此,新方法利用經(jīng)前/后向平滑的陣列協(xié)方差矩陣(FBACM)以及分離實虛部后的和差變換,獲得了維度相互適配的陣列流型和實值子空間,理論揭示了所獲實值子空間與原始復(fù)值子空間的線性張成關(guān)系,構(gòu)建了無虛假目標(biāo)的空間譜,且可以推廣至NUCA,增強了實值算法對于圓形陣列結(jié)構(gòu)的適應(yīng)性。同時,理論揭示了上述方法具有秩增強優(yōu)勢。數(shù)值仿真實驗表明,與傳統(tǒng)UCA陣列下的模式空間方法相比,該文所提出方法能夠在顯著降低復(fù)雜性的情況下,提供相似的估計性能和更好的角度分辨率。同時,在考慮幅度和相位誤差等情況時,所提方法具有較強的魯棒性。
-
關(guān)鍵詞:
- 波達(dá)方向估計 /
- 實值處理 /
- 圓形陣列
Abstract: The central symmetry based on the virtual array is a necessary fundamental assumption for the structure transformation of Uniform Circular Arrays (UCAs). In this paper, the virtual signal model for circular arrays is used to make an eigen analysis, and an efficient two-dimensional direction finding algorithm is proposed for arbitrary UCAs and Non Uniform Circular Arrays (NUCAs), where the structure transformation of linear arrays is avoided. As such, the Forward/Backward average of the Array Covariance Matrix (FBACM) and the sum-difference transformation method after separating the real and imaginary parts are both utilized to obtain the manifold and real-valued subspace with matching dimensions. Moreover, the linear relationship between the obtained real-valued subspace and the original complex-valued subspace is revealed, where the spatial spectrum is reconstructed without fake targets. The proposed method can be generalized to NUCAs, enhancing the adaptability of real-valued algorithms to circular array structures. Numerical simulations are applied to demonstrate that with significantly reduced complexity, the proposed method in this paper can provide similar performances and better angle resolution as compared to the traditional UCAs based on the mode-step. Meanwhile, the proposed method demonstrates high robustness with amplitude and phase errors in practical scenarios.-
Key words:
- Direction Of Arrival (DOA) /
- Real-valued estimation /
- Circular array
-
表 1 不同搜索類算法下CPU運行時間(s)
UCA-MUSIC UCA-Capon UCA-RB-MUSIC UCA-RV-MUSIC M=8 0.4528 0.4614 0.2270 0.2342 M=16 0.7401 0.7477 0.3593 0.3621 M=24 1.0692 1.0802 0.5208 0.5217 M=32 1.3705 1.3844 0.6491 0.6496 下載: 導(dǎo)出CSV
-
[1] CONG Jingyu, WANG Xianpeng, LAN Xiang, et al. A generalized noise reconstruction approach for robust DOA estimation[J]. IEEE Transactions on Radar Systems, 2023, 1: 382–394. doi: 10.1109/TRS.2023.3299184. [2] SHEN Ji, YI Jianxin, WAN Xianrong, et al. DOA estimation considering effect of adaptive clutter rejection in passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108913. doi: 10.1109/TGRS.2022.3141219. [3] WEN Fangqing, GUI Guan, GACANIN H, et al. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3071–3083. doi: 10.1109/TWC.2022.3215965. [4] ZHANG Zongyu, SHI Zhiguo, and GU Yujie. Ziv-zakai bound for DOAs estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 136–149. doi: 10.1109/TSP.2022.3229946. [5] 馬健鈞, 魏少鵬, 馬暉, 等. 基于ADMM的低仰角目標(biāo)二維DOA估計算法[J]. 電子與信息學(xué)報, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.MA Jianjun, WEI Shaopeng, MA Hui, et al. Two-dimensional DOA estimation for low-angle target based on ADMM[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582. [6] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830. [7] BARABELL A. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, USA, 1983: 336–339. doi: 10.1109/ICASSP.1983.1172124. [8] SWINDLEHURST A L, OTTERSTEN B, ROY R, et al. Multiple invariance ESPRIT[J]. IEEE Transactions on Signal Processing, 1992, 40(4): 867–881. doi: 10.1109/78.127959. [9] DAVIES D E N. A transformation between the phasing techniques required for linear and circular aerial arrays[J]. Proceedings of the Institution of Electrical Engineers, 1965, 112(11): 2041–2045. doi: 10.1049/piee.1965.0340. [10] MATHEWS C P and ZOLTOWSKI M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395–2407. doi: 10.1109/78.317861. [11] BELLONI F and KOIVUNEN V. Unitary root-MUSIC technique for uniform circular array[C]. The 3rd IEEE International Symposium on Signal Processing and Information Technology, Darmstadt, Germany, 2003: 451–454. doi: 10.1109/ISSPIT.2003.1341155. [12] MATHEWS C P and ZOLTOWSKI M D. Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2535–2539. doi: 10.1109/78.317881. [13] WU Yuntao, AMIR L, JENSEN J R, et al. Joint pitch and DOA estimation using the ESPRIT method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1): 32–45. doi: 10.1109/taslp.2014.2367817. [14] 閆鋒剛, 沈毅, 劉帥, 等. 高效超分辨波達(dá)方向估計算法綜述[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01.YAN Fenggang, SHEN Yi, LIU Shuai, et al. Overview of efficient algorithms for super-resolution DOA estimates[J]. Systems Engineering and Electronics, 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01. [15] HUARNG K C and YEH C C. A unitary transformation method for angle-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 975–977. doi: 10.1109/78.80927. [16] YAN Fenggang, JIN Ming, LIU Shuai, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548–1560. doi: 10.1109/TSP.2014.2298384. [17] YAN Fenggang, YAN Xuewei, SHI Jun, et al. MUSIC-like direction of arrival estimation based on virtual array transformation[J]. Signal Processing, 2017, 139: 156–164. doi: 10.1016/j.sigpro.2017.04.017. [18] 王兆彬, 鞏朋成, 鄧薇, 等. 聯(lián)合協(xié)方差矩陣重構(gòu)和ADMM的魯棒波束形成[J]. 哈爾濱工業(yè)大學(xué)學(xué)報, 2023, 55(4): 64–71. doi: 10.11918/202107104.WANG Zhaobin, GONG Pengcheng, DENG Wei, et al. Robust beamforming by joint covariance matrix reconstruction and ADMM[J]. Journal of Harbin Institute of Technology, 2023, 55(4): 64–71. doi: 10.11918/202107104. [19] WILKES D M, MORGERA S D, NOOR F, et al. A hermitian toeplitz matrix is unitarily similar to a real toeplitz-plus-hankel matrix[J]. IEEE Transactions on Signal Processing, 1991, 39(9): 2146–2148. doi: 10.1109/78.134459. -