面向遙感圖像解譯的增量深度學(xué)習(xí)
doi: 10.11999/JEIT240172
-
1.
武漢大學(xué)計(jì)算機(jī)學(xué)院 武漢 430072
-
2.
武漢大學(xué)測繪遙感信息工程國家重點(diǎn)實(shí)驗(yàn)室 武漢 430079
Incremental Deep Learning for Remote Sensing Image Interpretation
-
1.
School of Computer Science, Wuhan University, Wuhan 430072, China
-
2.
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
-
摘要: 深度學(xué)習(xí)的發(fā)展推動了高精度遙感圖像智能解譯模型的涌現(xiàn)。然而,目前遙感智能解譯模型大多基于預(yù)先定義的靜態(tài)數(shù)據(jù)集獨(dú)立訓(xùn)練,難以適應(yīng)環(huán)境開放和需求動態(tài)的實(shí)際應(yīng)用,嚴(yán)重阻礙了遙感智能解譯模型的廣域和長期運(yùn)用。增量學(xué)習(xí)能使模型持續(xù)學(xué)習(xí)新知識,并保持對舊知識的記憶,近年來,被廣泛應(yīng)用于推動遙感智能解譯模型演化、提升模型智能解譯性能。該文面向多模態(tài)遙感數(shù)據(jù)、不同類型解譯任務(wù),全面調(diào)研了遙感圖像智能解譯增量學(xué)習(xí)方法,從遺忘問題解決思路、解譯模型進(jìn)化應(yīng)用兩個(gè)層面梳理了現(xiàn)有研究工作。在此基礎(chǔ)上,從促進(jìn)遙感圖像解譯模型進(jìn)化研究的角度,展望和討論了遙感領(lǐng)域增量學(xué)習(xí)的未來研究方向。
-
關(guān)鍵詞:
- 遙感圖像解譯 /
- 深度模型 /
- 增量學(xué)習(xí) /
- 模型進(jìn)化
Abstract: The significant advancement of deep learning has facilitated the emergence of high-precision interpretation models for remote-sensing images. However, a notable drawback is that the majority of interpretation models are trained independently on static datasets, rendering them incapable of adapting to open environments and dynamic demands. This limitation poses a substantial obstacle to the widespread and long-term application of remote-sensing interpretation models. Incremental learning, empowering models to continuously learn new knowledge while retaining previous knowledge, has been recently utilized to drive the evolution of interpretation models and improve their performance. A comprehensive investigation of incremental learning methods for multi-modal remote sensing data and diverse interpretation tasks is provided in this paper. Existing research efforts are organized and reviewed in terms of mitigating catastrophic forgetting and facilitating interpretation model evolution. Drawing from this research progress, this study deliberates on the future research directions for incremental learning in remote sensing, with the aim of advancing research in model evolution for remote sensing image interpretation. -
表 1 面向遙感圖像解譯的增量學(xué)習(xí)方法對比與總結(jié)
方法 核心思想 優(yōu)點(diǎn) 缺點(diǎn) 代表性成果 知識蒸餾 新舊模型在同一輸入圖像上的輸出保持一致 以損失函數(shù)的形式約束模型的參數(shù)更新,簡單有效且易于實(shí)施 舊模型保存,占用一定的存儲空間 逐任務(wù)知識蒸餾[24] 背景建模知識蒸餾[25] 空間-通道壓縮特征蒸餾[26] 結(jié)構(gòu)化知識蒸餾[27,28] 歷史信息引導(dǎo)特征蒸餾[29] 網(wǎng)絡(luò)擴(kuò)展 增加獨(dú)立網(wǎng)絡(luò)參數(shù)學(xué)習(xí)新知識 直接凍結(jié)已有網(wǎng)絡(luò)即可有效保持舊知識 不斷擴(kuò)大的網(wǎng)絡(luò)規(guī)模增加計(jì)算和存儲成本 增量學(xué)習(xí)建模為提升過程[30,31] 特征編碼器深層結(jié)構(gòu)擴(kuò)展[32] 殘差模塊擴(kuò)展[33,34] 特征遷移模塊擴(kuò)展[35] 記憶回放 保留少部分舊數(shù)據(jù),幫助模型回憶舊知識 模型基于新舊數(shù)據(jù)優(yōu)化,能夠較好地感知新舊知識的邊界 舊數(shù)據(jù)保留增加存儲成本,且易產(chǎn)生過擬合 代表性樣本選擇[36–38] 預(yù)測偏差校正[39–46] 舊數(shù)據(jù)特征生成[24,47] 下載: 導(dǎo)出CSV
表 2 面向可見光圖像解譯的類別增量學(xué)習(xí)方法總結(jié)
解譯任務(wù) 文獻(xiàn) 貢獻(xiàn) 遺忘問題解決思路 知識蒸餾 網(wǎng)絡(luò)擴(kuò)展 記憶回放 場景識別 [31] 類別增量學(xué)習(xí)建模為特征提升過程,動態(tài)擴(kuò)展模塊化分類網(wǎng)絡(luò) $ \surd $ $ \surd $ $ \surd $ [38] 動態(tài)混合的樣本選擇策略和基于異構(gòu)原型的學(xué)習(xí)框架,增加存儲樣本的信息量 $ \surd $ $ \times $ $ \surd $ [64] 利用可學(xué)習(xí)提示解耦場景識別的知識,避免特定知識的相互干擾緩解遺忘問題 $ \times $ $ \surd $ $ \times $ [65] 相互協(xié)作的瞬時(shí)網(wǎng)絡(luò)和保持網(wǎng)絡(luò)實(shí)現(xiàn)有效的舊知識召回和新知識積累 $ \surd $ $ \times $ $ \times $ [37] 凸包構(gòu)造算法選取接近類邊界的樣本 $ \times $ $ \times $ $ \surd $ [53] 根據(jù)新舊類別的相似性設(shè)計(jì)類別學(xué)習(xí)順序,提高新模型的新類別學(xué)習(xí)效率 $ \surd $ $ \times $ $ \surd $ [47] 利用VAE生成多樣的舊類別特征,避免過擬合和存儲成本高的問題 $ \times $ $ \times $ $ \surd $ [40] 平衡的舊數(shù)據(jù)集微調(diào)新模型的預(yù)測頭,緩解新舊類別不平衡導(dǎo)致的預(yù)測偏差 $ \surd $ $ \times $ $ \surd $ [63] 擴(kuò)展預(yù)測頭學(xué)習(xí)新類別,并依據(jù)圖像特征與任務(wù)原型的相似性選擇預(yù)測頭 $ \surd $ $ \surd $ $ \times $ 目標(biāo)檢測 [45] 基于熵的蓄水池抽樣策略和樣本抽樣加權(quán)緩解回放不平衡導(dǎo)致的預(yù)測偏差 $ \times $ $ \times $ $ \surd $ [49] 在區(qū)域候選網(wǎng)絡(luò)和預(yù)測頭添加分支并遷移知識,實(shí)現(xiàn)新類別學(xué)習(xí)和舊知識保留 $ \surd $ $ \surd $ $ \times $ 地物分類 [28] 跨圖像特征相關(guān)性蒸餾損失增強(qiáng)模型的新類別學(xué)習(xí)能力 $ \surd $ $ \times $ $ \times $ [24] 像素級舊特征生成,應(yīng)對遺忘問題;逐任務(wù)知識蒸餾避免新類別向舊類別壓縮 $ \surd $ $ \times $ $ \surd $ [26] 空間-通道維度的特征壓縮并遷移,降低特征空間知識蒸餾的計(jì)算成本;信息熵量化舊模型預(yù)測的準(zhǔn)確性,并僅使用高置信度像素預(yù)測維持舊知識 $ \surd $ $ \times $ $ \times $ [29] 歷史信息引導(dǎo)模型關(guān)注前景(舊類別)區(qū)域的知識遷移;高置信度的舊模型預(yù)測與真實(shí)標(biāo)簽相結(jié)合,為新模型提供完整的類別監(jiān)督信息 $ \surd $ $ \times $ $ \times $ [66] 多樣蒸餾損失促使模型關(guān)注易被遺忘的小目標(biāo)和目標(biāo)邊緣 $ \surd $ $ \times $ $ \times $ [67] 依據(jù)類別實(shí)例數(shù)量計(jì)算每張圖像的重要性,確保存儲圖像的類別均衡 $ \surd $ $ \times $ $ \surd $ 下載: 導(dǎo)出CSV
表 3 面向可見光遙感圖像解譯的類別增量學(xué)習(xí)常用數(shù)據(jù)集
解譯任務(wù) 數(shù)據(jù)集 圖像數(shù)量 類別數(shù)量 類別增量學(xué)習(xí)方法 場景識別 NWPU-RESISC45[70] 31500 45 [37,53,64] FGSCR-42[71] 9320 42 [38] PatternNet[72] 30400 38 [53] RSICB-256[73] 28000 35 [31,65] Optimal-31[74] 1860 31 [47,63] AID[75] 10000 30 [31,64,65] CLRS[76] 15000 25 [40] UC-Merced[77] 2100 21 [31,47,63–65] SIRI-WHU[78] 2400 12 [37] 目標(biāo)檢測 DIOR[79] 23463 20 [45,49] DOTA[80] 2806 15 [45,49] NWPU VHR-10[81] 800 10 [45] 地物分類 iSAID[82] 2806 15 [24,28,29] GCSS[83] 948 8 [29] Deepglobe[84] 1146 7 [24,26] Potsdam[85]/Vaihingen[86] 38/33 6 [24,26,28,66,67] Luxcarta[67] – 5 [67,69] 下載: 導(dǎo)出CSV
表 4 面向可見光圖像解譯的類別增量學(xué)習(xí)方法性能對比
解譯任務(wù) 研究工作 評價(jià)指標(biāo) 數(shù)據(jù)集 增量訓(xùn)練次數(shù) 得分(%) 發(fā)布時(shí)間 場景識別 [31] mACC RSICB-256 9 91.10 TGRS’2024 AID 6 86.75 UC-Merced 3 94.29 [38] ACC FGSCR-42 8 89.06 TAES’2024 [64] ACC NWPU-RESISC45 9 72.90 GRSL’2023 AID 6 81.10 UC-Merced 3 92.33 [65] mACC RSICB-256 9 82.63 IEEE/CVF’2022 AID 6 88.93 UC-Merced 3 89.52 [37] ACC NWPU-RESISC45 7 93.47 TGRS’2022 SIRI-WHU 7 98.13 [53] mACC NWPU-RESISC45 9 49.42 JSTARS’2021 PatternNet 6 62.31 [47] ACC Optimal-31 10 86.80 GRSL’2022 UC-Merced 7 94.20 [40] ACC CLRS 4 32.30 CIOP’2021 [63] ACC Optimal-31 10 71.00 GRSL’2022 UC-Merced 7 89.00 目標(biāo)檢測 [45] mAP DIOR 20 34.40 EAAI’2023 DOTA 15 54.90 NWPU VHR-10 10 73.60 [49] mAP DIOR 2 68.45 TGRS’2022 DOTA 2 65.20 地物分類 [28] mIoU iSAID 6 31.88 TGRS’2023 Potsdam 5 74.44 Vaihingen 5 62.54 [24] mIoU iSAID 6 31.71 TGRS’2022 Deepglobe 6 57.00 Potsdam 2 77.70 Vaihingen 3 74.60 [26] mIoU Deepglobe 6 52.40 TGRS’2022 Potsdam 3 76.30 Vaihingen 3 74.10 [29] mIoU iSAID 6 30.21 TGRS’2022 GCSS 5 62.53 [66] mIoU Potsdam 2 75.92 TGRS’2022 Vaihingen 3 73.96 [67] F1 Luxcarta 3 68.09 JSTARS’2019 Potsdam 3 84.25 Vaihingen 3 87.44 下載: 導(dǎo)出CSV
表 5 面向可見光圖像解譯的域增量學(xué)習(xí)方法總結(jié)
解譯任務(wù) 文獻(xiàn) 貢獻(xiàn) 遺忘問題解決思路 知識蒸餾 網(wǎng)絡(luò)擴(kuò)展 記憶回放 場景識別 [87] 雙網(wǎng)絡(luò)知識協(xié)同學(xué)習(xí)策略增強(qiáng)場景識別模型的新知識學(xué)習(xí)和舊知識鞏固能力 $ \surd $ $ \times $ $ \times $ 目標(biāo)檢測 [88] 為特征空間、輸出空間的知識蒸餾添加可學(xué)習(xí)權(quán)重,解決預(yù)測偏差問題 $ \surd $ $ \times $ $ \surd $ 地物分類 [30] 域增量學(xué)習(xí)建模為提升過程,并利用自適應(yīng)學(xué)習(xí)率確定每個(gè)網(wǎng)絡(luò)的重要性 $ \times $ $ \surd $ $ \times $ [50] 擴(kuò)展整個(gè)網(wǎng)絡(luò),新網(wǎng)絡(luò)的學(xué)習(xí)目標(biāo)是彌補(bǔ)已有模型在新數(shù)據(jù)上的性能不足 $ \times $ $ \surd $ $ \times $ 變化檢測 [34] 輸出空間和多層次特征空間的知識蒸餾保留舊知識;擴(kuò)展域殘差單位和解碼器,學(xué)習(xí)新知識 $ \surd $ $ \surd $ $ \times $ 下載: 導(dǎo)出CSV
表 6 面向可見光圖像解譯的域增量學(xué)習(xí)方法性能對比
解譯任務(wù) 文獻(xiàn) 評價(jià)指標(biāo) 數(shù)據(jù)集 增量訓(xùn)練次數(shù) 得分(%) 發(fā)布時(shí)間 場景識別 [87] ACC NWPU-RESISC45[70] 5 80.53 計(jì)算機(jī)應(yīng)用’2024 AID[75] 5 77.40 目標(biāo)檢測 [88] mAP@0.5 FASDD_CD[91]$ \to $FASDD_RS[91] 2 49.47 JAG’2023 FASDD_RS[91]$ \to $FLAME[92] 2 51.53 地物分類 [30] OA DREAM-B$ ? $[30]$ \to $xBD[93]$ \to $Haiti-xBD[30] 3 97.94
(僅新域)ISPRS’2023 [50] IoU DREAM-B[50] 4 63.72 Remote Sens.’2020 變化檢測 [34] $ {\varDelta }_{\mathrm{I}\mathrm{o}\mathrm{U}} $ SYSU-CD[89]$ \to $CDD[90]$ \to $PRCV[34] 3 8.22 TGRS’2024 $ \to $:指示模型增量學(xué)習(xí)順序 下載: 導(dǎo)出CSV
表 7 面向可見光圖像解譯的任務(wù)增量學(xué)習(xí)方法總結(jié)
解譯任務(wù) 文獻(xiàn) 貢獻(xiàn) 遺忘問題解決思路 知識蒸餾 網(wǎng)絡(luò)擴(kuò)展 記憶回放 場景識別 [35] 特征遷移模塊學(xué)習(xí)相鄰任務(wù)間的特征分布映射,提升模型的新任務(wù)學(xué)習(xí)能力,并避免了存儲成本和推理時(shí)間的增加 $ \surd $ $ \surd $ $ \times $ 地物分類 [33] 擴(kuò)展域殘差適應(yīng)模塊和解碼器,學(xué)習(xí)新任務(wù);設(shè)計(jì)重疊類別的知識蒸餾,應(yīng)對不同任務(wù)的標(biāo)簽空間偏移 $ \surd $ $ \surd $ $ \times $ [27] 約束新舊模型的低層特征逐像素表征一致,同時(shí)深層特征像素親和矩陣相似,
以保留在舊任務(wù)數(shù)據(jù)上學(xué)習(xí)到的像素交互信息$ \surd $ $ \surd $ $ \times $ 下載: 導(dǎo)出CSV
表 8 面向可見光圖像解譯的任務(wù)增量學(xué)習(xí)性能對比
解譯任務(wù) 文獻(xiàn) 評價(jià)指標(biāo) 數(shù)據(jù)集 增量訓(xùn)練次數(shù) 得分(%) 發(fā)布時(shí)間 場景識別 [35] mACC AID[75] 10 86.74 TGRS’2022 BigEarthNet[94] 5 95.89 EuroSAT[95] 2 94.85 EuroSAT[95]$ \to $BigEarthNet[94]$ \to $RS-C11[96]$ \to $
RSSCN7[97]$ \to $AID[75]$ \to $SIRI-WHU[78]$ \to $SAT-4[98]7 79.86 地物分類 [33] $ {\varDelta }_{\mathrm{m}\mathrm{I}\mathrm{o}\mathrm{U}} $ GID[99]$ \to $BDCI2020[100]$ \to $Deepglobe[84]$ \to $
LoveDA-Urban[101]$ \to $LoveDA-Rural[101]5 –5.46 Remote Sens.’2023 [27] mIoU Deepglobe[84]$ \to $Potsdam[85]$ \to $GCSS[83] 3 66.27 TGRS’2021 Vaihingen[86]$ \to $Potsdam[85] 2 79.72 $ \to $:指示模型增量學(xué)習(xí)順序 下載: 導(dǎo)出CSV
表 9 面向合成孔徑雷達(dá)圖像目標(biāo)識別的類別增量學(xué)習(xí)方法總結(jié)
文獻(xiàn) 貢獻(xiàn) 遺忘問題解決思路 知識蒸餾 網(wǎng)絡(luò)擴(kuò)展 記憶回放 [102] 基于廣義最大覆蓋的樣本選擇,降低計(jì)算成本 $ \times $ $ \times $ $ \surd $ [56] 基于局部分布統(tǒng)計(jì)信息和全局分布密度信息選擇代表性樣本;評估測試樣本的預(yù)測可靠性,并由此管理增量數(shù)據(jù) $ \times $ $ \times $ $ \surd $ [32] 特征編碼器深層結(jié)構(gòu)擴(kuò)展結(jié)合記憶回放、知識蒸餾,應(yīng)對遺忘問題 $ \surd $ $ \surd $ $ \surd $ [44] 訓(xùn)練樣本抽樣加權(quán)和記憶增強(qiáng)的權(quán)重對齊,解決新舊類別不平衡導(dǎo)致的預(yù)測偏差 $ \surd $ $ \times $ $ \surd $ [54] Openmax算法幫助模型識別未知類別,此后利用記憶回放賦予模型持續(xù)學(xué)習(xí)未知類別的能力 $ \times $ $ \times $ $ \surd $ [39] 可分離學(xué)習(xí)策略緩解新舊類別不平衡導(dǎo)致的預(yù)測偏差 $ \surd $ $ \times $ $ \surd $ [41] 樣本抽樣加權(quán),構(gòu)建類別均衡的訓(xùn)練批次,校正預(yù)測偏差 $ \surd $ $ \times $ $ \surd $ [43] 類別分離損失解決新舊類別相似產(chǎn)生的混淆問題;偏差校正層應(yīng)對新舊類別不平衡現(xiàn)象 $ \surd $ $ \times $ $ \surd $ [46] 類別的有效樣本數(shù)加權(quán)交叉熵?fù)p失,解決新舊類別不平衡導(dǎo)致的預(yù)測偏差 $ \times $ $ \times $ $ \surd $ [36] 基于局部幾何和統(tǒng)計(jì)信息的類邊界樣本選擇,并利用SMOTE方法重采樣,豐富舊類別樣本 $ \times $ $ \times $ $ \surd $ [55] 基于局部幾何和統(tǒng)計(jì)信息的類邊界樣本選擇 $ \times $ $ \times $ $ \surd $ 下載: 導(dǎo)出CSV
表 10 面向合成孔徑雷達(dá)圖像目標(biāo)識別的類別增量學(xué)習(xí)方法性能對比
文獻(xiàn) 網(wǎng)絡(luò)架構(gòu) 評價(jià)指標(biāo) 數(shù)據(jù)集 每類存儲量 增量訓(xùn)練次數(shù) 得分(%) 發(fā)布時(shí)間 [38] ResNet-34 ACC MSTAR 50 10 83.42 TAES’2024 [102] Autoencoder OA MSTAR 50 8 92.54 TGRS’2023 [56] A-ConvNets – MSTAR – – – TGRS’2023 [32] ViT-B ACC MSTAR 20 8 74.65 Remote Sens.’2023 [44] – ACC MSTAR$ + $OpenSARShip 200(11個(gè)類別) 12 93.87 GRSL’2023 [54] CNN OA MSTAR – 3 92.70 RadarConf’2023 [39] DCFM-CNN ACC MSTAR 30 7 91.76 TGRS’2022 OpenSARShip 30 3 – [41] ResNet-18 ACC MSTAR$ + $OpenSARShip 200(12個(gè)類別) 12 93.87 JSTARS’2022 [43] ResNet-18 ACC (top-5) MSTAR 20 10 97.17 Appli. Sci.’2022 [46] ResNet-18 ACC OpenSARShip – 3 51.15 IGARSS’2022 [36] – ACC MSTAR – 10 – TGRS’2020 [55] – ACC MSTAR 888(9個(gè)類別) 8 86.50 TGRS’2019 $ + $:組合不同數(shù)據(jù)集模擬增量學(xué)習(xí)階段 下載: 導(dǎo)出CSV
表 11 面向高光譜圖像分類的增量學(xué)習(xí)方法總結(jié)
增量學(xué)習(xí)類型 文獻(xiàn) 貢獻(xiàn) 遺忘問題解決思路 知識蒸餾 網(wǎng)絡(luò)擴(kuò)展 記憶回放 類別增量學(xué)習(xí) [42] 新舊類別平衡集優(yōu)化偏差校正層,校準(zhǔn)模型在新類別上的輸出 $ \surd $ $ \times $ $ \surd $ [105] 基于新舊類別的特征向量均值,提出線性規(guī)劃方法更新分類器權(quán)重 $ \times $ $ \surd $ $ \times $ 任務(wù)增量學(xué)習(xí) [106] 基于度量學(xué)習(xí)的光譜-空間特征蒸餾和輸出蒸餾幫助模型維持舊知識 $ \surd $ $ \times $ $ \times $ 下載: 導(dǎo)出CSV
表 12 面向高光譜圖像分類的增量學(xué)習(xí)方法性能對比
增量學(xué)習(xí)類型 文獻(xiàn) 評價(jià)指標(biāo) 數(shù)據(jù)集 增量訓(xùn)練次數(shù) 得分(%) 發(fā)布時(shí)間 類別增量學(xué)習(xí) [42] ACC PaviaU 3 85.76 Remote Sens.’2022 Salinas 5 93.31 Houston 4 86.54 [105] ACC PaviaU 2 73.06 TCybernatics’2020 Indian Pines – – Salinas – – 任務(wù)增量學(xué)習(xí) [106] mACC PaviaU$ \to $Indian Pines
$ \to $Salinas$ \to $Houston4 72.84 TGRS’2022 $ \to $:指示模型增量學(xué)習(xí)順序 下載: 導(dǎo)出CSV
表 13 面向高光譜圖像分類的增量學(xué)習(xí)常用數(shù)據(jù)集
數(shù)據(jù)集 PaviaU[107] Salinas[108] Houston[109] Indian Pines[110] 采集地點(diǎn) 意大利北部 加利福尼亞州 德克薩斯州 印第安納州 采集設(shè)備 ROSIS AVIRIS - AVIRIS 光譜覆蓋范圍(μm) 0.43~0.86 0.4~0.25 0.38~1.05 0.4~2.5 空間分辨率(m) 1.3 3.7 2.5 20 波段數(shù)量 115 224 144 220 像素?cái)?shù)量 42776 54129 15029 21025 類別數(shù)量 9 16 15 16 增量學(xué)習(xí)方法 [42,105,106] [42,105,106] [42,106] [105,106] 下載: 導(dǎo)出CSV
-
[1] 周培誠, 程塨, 姚西文, 等. 高分辨率遙感影像解譯中的機(jī)器學(xué)習(xí)范式[J]. 遙感學(xué)報(bào), 2021, 25(1): 182–197. doi: 10.11834/jrs.20210164.ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182–197. doi: 10.11834/jrs.20210164. [2] 梅安新, 彭望琭, 秦其明, 等. 遙感導(dǎo)論[M]. 北京: 高等教育出版社, 2001: 171–175.MEI Anxin, PENG Wanglu, QIN Qiming, et al. An Introduction to Remote Sensing[M]. Beijing: Higher Education Press, 2001: 171–175. [3] BI Qi, QIN Kun, ZHANG Han, et al. Local semantic enhanced ConvNet for aerial scene recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 6498–6511. doi: 10.1109/TIP.2021.3092816. [4] BI Qi, ZHOU Beichen, QIN Kun, et al. All grains, one scheme (AGOS): Learning multigrain instance representation for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5629217. doi: 10.1109/TGRS.2022.3201755. [5] YANG Yuqun, TANG Xu, CHEUNG Y M, et al. SAGN: Semantic-aware graph network for remote sensing scene classification[J]. IEEE Transactions on Image Processing, 2023, 32: 1011–1025. doi: 10.1109/TIP.2023.3238310. [6] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2844–2853. doi: 10.1109/CVPR.2019.00296. [7] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281. [8] LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540. [9] LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: A deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4): 140305. doi: 10.1007/s11432-022-3599-y. [10] LIU Yinhe, SHI Sunan, WANG Junjue, et al. Seeing beyond the patch: Scale-adaptive semantic segmentation of high-resolution remote sensing imagery based on reinforcement learning[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16822–16832. doi: 10.1109/ICCV51070.2023.01547. [11] BERGAMASCO L, BOVOLO F, and BRUZZONE L. A dual-branch deep learning architecture for multisensor and multitemporal remote sensing semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2147–2162. doi: 10.1109/JSTARS.2023.3243396. [12] PANG Chao, WU Jiang, DING Jian, et al. Detecting building changes with off-nadir aerial images[J]. Science China Information Sciences, 2023, 66(4): 140306. doi: 10.1007/s11432-022-3691-4. [13] WU Chen, DU Bo, and ZHANG Liangpei. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774–9788. doi: 10.1109/TPAMI.2023.3237896. [14] PANG Chao, WENG Xingxing, WU Jiang, et al. HiCD: Change detection in quality-varied images via hierarchical correlation distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611816. doi: 10.1109/TGRS.2024.3367778. [15] ALHICHRI H. Multitask classification of remote sensing scenes using deep neural networks[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1195–1198. doi: 10.1109/IGARSS.2018.8518874. [16] MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513–5533. doi: 10.1109/TPAMI.2022.3213473. [17] DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/TPAMI.2021.3057446. [18] BELOUADAH E, POPESCU A, and KANELLOS I. A comprehensive study of class incremental learning algorithms for visual tasks[J]. Neural Networks, 2021, 135: 38–54. doi: 10.1016/j.neunet.2020.12.003. [19] LIU Hao, ZHOU Yong, LIU Bing, et al. Incremental learning with neural networks for computer vision: A survey[J]. Artificial Intelligence Review, 2023, 56(5): 4557–4589. doi: 10.1007/s10462-022-10294-2. [20] 周大蔚, 汪福運(yùn), 葉翰嘉, 等. 基于深度學(xué)習(xí)的類別增量學(xué)習(xí)算法綜述[J]. 計(jì)算機(jī)學(xué)報(bào), 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. Deep learning for class-incremental learning: A survey[J]. Chinese Journal of Computers, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577. [21] 朱飛, 張煦堯, 劉成林. 類別增量學(xué)習(xí)研究進(jìn)展和性能評價(jià)[J]. 自動化學(xué)報(bào), 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.ZHU Fei, ZHANG Xuyao, and LIU Chenglin. Class incremental learning: A review and performance evaluation[J]. Acta Automatica Sinica, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588. [22] VAN DE VEN G M, TUYTELAARS T, and TOLIAS A S. Three types of incremental learning[J]. Nature Machine Intelligence, 2022, 4(12): 1185–1197. doi: 10.1038/s42256-022-00568-3. [23] HIHN H and BRAUN D A. Hierarchically structured task-agnostic continual learning[J]. Machine Learning, 2023, 112(2): 655–686. doi: 10.1007/s10994-022-06283-9. [24] SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental semantic segmentation of aerial images via pixel-level feature generation and task-wise distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5635817. doi: 10.1109/TGRS.2022.3231351. [25] CERMELLI F, MANCINI M, BULó S R, et al. Modeling the background for incremental and weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10099–10113. doi: 10.1109/TPAMI.2021.3133954. [26] SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental learning for semantic segmentation in aerial imagery via distillation in all aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5615712. doi: 10.1109/TGRS.2021.3135456. [27] FENG Yingchao, SUN Xian, DIAO Wenhui, et al. Continual learning with structured inheritance for semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5607017. doi: 10.1109/TGRS.2021.3076664. [28] RONG Xuee, WANG Peijin, DIAO Wenhui, et al. MiCro: Modeling cross-image semantic relationship dependencies for class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5616218. doi: 10.1109/TGRS.2023.3297203. [29] RONG Xuee, SUN Xian, DIAO Wenhui, et al. Historical information-guided class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622618. doi: 10.1109/TGRS.2022.3170349. [30] GE Jiayi, TANG Hong, YANG Naisen, et al. Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 105–128. doi: 10.1016/j.isprsjprs.2022.11.010. [31] YE Zhen, ZHANG Yu, ZHANG Jinxin, et al. A multiscale incremental learning network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5606015. doi: 10.1109/TGRS.2024.3353737. [32] PAN Qidi, LIAO Kuo, HE Xuesi, et al. A class-incremental learning method for SAR images based on self-sustainment guidance representation[J]. Remote Sensing, 2023, 15(10): 2631. doi: 10.3390/rs15102631. [33] RUI Xue, LI Ziqiang, CAO Yang, et al. DILRS: Domain-incremental learning for semantic segmentation in multi-source remote sensing data[J]. Remote Sensing, 2023, 15(10): 2541. doi: 10.3390/rs15102541. [34] WENG Lean, YANG Wenqing, HU Boni, et al. MDINet: Multidomain incremental network for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4402315. doi: 10.1109/TGRS.2023.3348878. [35] LU Xiaonan, SUN Xian, DIAO Wenhui, et al. LIL: Lightweight incremental learning approach through feature transfer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5611320. doi: 10.1109/TGRS.2021.3102629. [36] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Class boundary exemplar selection based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5782–5792. doi: 10.1109/TGRS.2020.2970076. [37] LIU Weiwei, NIE Xiangli, ZHANG Bo, et al. Incremental learning with open-set recognition for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622916. doi: 10.1109/TGRS.2022.3173995. [38] FU Yimin, LIU Zhunga, WU Changyuan, et al. Class-incremental recognition of objects in remote sensing images with dynamic hybrid exemplar selection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024. doi: 10.1109/TAES.2024.3363114. [39] LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346. [40] XI Jiangbo, YAN Ziyun, JIANG Wandong, et al. Continual learning for scene classification of high resolution remote sensing images[C]. SPIE 12057, Twelfth International Conference on Information Optics and Photonics, Xi’an, China, 2021: 558–574. doi: 10.1117/12.2605919. [41] TANG Jiaxin, XIANG Deliang, ZHANG Fan, et al. Incremental SAR automatic target recognition with error correction and high plasticity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1327–1339. doi: 10.1109/JSTARS.2022.3141485. [42] XU Meng, ZHAO Yuanyuan, LIANG Yajun, et al. Hyperspectral image classification based on class-incremental learning with knowledge distillation[J]. Remote Sensing, 2022, 14(11): 2556. doi: 10.3390/rs14112556. [43] ZHOU Yongsheng, ZHANG Shuo, SUN Xiaokun, et al. SAR target incremental recognition based on hybrid loss function and class-bias correction[J]. Applied Sciences, 2022, 12(3): 1279. doi: 10.3390/app12031279. [44] HUANG Heqing, GAO Fei, WANG Jun, et al. An incremental SAR target recognition framework via memory-augmented weight alignment and enhancement discrimination[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4005205. doi: 10.1109/LGRS.2023.3269480. [45] CHEN Xi, JIANG Jie, LI Zhiqiang, et al. An online continual object detector on VHR remote sensing images with class imbalance[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105549. doi: 10.1016/j.engappai.2022.105549. [46] ZHENG Zhi, NIE Xiangli, and ZHANG Bo. Fine-grained continual learning for SAR target recognition[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2207–2210. doi: 10.1109/IGARSS46834.2022.9884149. [47] AMMOUR N. Continual learning using data regeneration for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8012805. doi: 10.1109/LGRS.2021.3080036. [48] HINTON Geoffrey, VINYALS Oriol, and DEAN Jeff. Distilling the knowledge in a neural network[FR/OL]. https://arxiv.org/abs/1503.02531, 2014. [49] CHEN Jingzhou, WANG Shihao, CHEN Ling, et al. Incremental detection of remote sensing objects with feature pyramid and knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5600413. doi: 10.1109/TGRS.2020.3042554. [50] YANG Naisen and TANG Hong. GeoBoost: An incremental deep learning approach toward global mapping of buildings from VHR remote sensing images[J]. Remote Sensing, 2020, 12(11): 1794. doi: 10.3390/rs12111794. [51] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189–1232. doi: 10.1214/aos/1013203451. [52] WELLING M. Herding dynamical weights to learn[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1121–1128. doi: 10.1145/1553374.1553517. [53] BHAT S D, BANERJEE B, CHAUDHURI S, et al. CILEA-NET: Curriculum-based incremental learning framework for remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5879–5890. doi: 10.1109/JSTARS.2021.3084408. [54] OVEIS A H, GIUSTI E, GHIO S, et al. Incremental learning in synthetic aperture radar images using openmax algorithm[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149627. [55] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266. [56] DANG Sihang, CUI Zongyong, CAO Zongjie, et al. Distribution reliability assessment-based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208413. doi: 10.1109/TGRS.2023.3277873. [57] LI Yuhua and MAGUIRE L. Selecting critical patterns based on local geometrical and statistical information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1189–1201. doi: 10.1109/TPAMI.2010.188. [58] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680. doi: 10.5555/2969033.2969125. [59] KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–14. [60] AMMOUR N. Memory using data generator in continual learning for remote sensing scene classification[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4924–4927. doi: 10.1109/IGARSS47720.2021.9553520. [61] 李德仁, 張良培, 夏桂松. 遙感大數(shù)據(jù)自動分析與數(shù)據(jù)挖掘[J]. 測繪學(xué)報(bào), 2014, 43(12): 1211–1216. doi: 10.13485/j.cnki.11-2089.2014.0187.LI Deren, ZHANG Liangpei, and XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211–1216. doi: 10.13485/j.cnki.11-2089.2014.0187. [62] 龔健雅, 許越, 胡翔云, 等. 遙感影像智能解譯樣本庫現(xiàn)狀與研究[J]. 測繪學(xué)報(bào), 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085.GONG Jianya, XU Yue, HU Xianyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085. [63] AMMOUR N, BAZI Y, ALHICHRI H, et al. Continual learning approach for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8000905. doi: 10.1109/LGRS.2020.3019071. [64] ZHAO Ling, XU Linrui, ZHAO Li, et al. Continual learning for remote sensing image scene classification with prompt learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6012005. doi: 10.1109/LGRS.2023.3328981. [65] YE Dingqi, PENG Jian, LI Haifeng, et al. Better memorization, better recall: A lifelong learning framework for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5626814. doi: 10.1109/TGRS.2022.3190392. [66] LI Junxi, SUN Xian, DIAO Wenhui, et al. Class-incremental learning network for small objects enhancing of semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612920. doi: 10.1109/TGRS.2021.3124303. [67] TASAR O, TARABALKA Y, and ALLIEZ P. Incremental learning for semantic segmentation of large-scale remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3524–3537. doi: 10.1109/JSTARS.2019.2925416. [68] WANG Zifeng, ZHANG Zizhao, LEE C, et al. Learning to prompt for continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 139–149. doi: 10.1109/CVPR52688.2022.00024. [69] TASAR O, TARABALKA Y, and ALLIEZ P. Continual learning for dense labeling of satellite images[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4943–4946. doi: 10.1109/IGARSS.2019.8898615. [70] CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998. [71] DI Yanghua, JIANG Zhiguo, and ZHANG Haopeng. A public dataset for fine-grained ship classification in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 747. doi: 10.3390/rs13040747. [72] ZHOU Weixun, NEWSAM S, LI Congmin, et al. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 197–209. doi: 10.1016/j.isprsjprs.2018.01.004. [73] LI Haifeng, JIANG Hao, GU Xin, et al. CLRS: Continual learning benchmark for remote sensing image scene classification[J]. Sensors, 2020, 20(4): 1226. doi: 10.3390/s20041226. [74] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987. [75] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945. [76] LI Haifeng, DOU Xin, TAO Chao, et al. RSI-CB: A large-scale remote sensing image classification benchmark using crowdsourced data[J]. Sensors, 2020, 20(6): 1594. doi: 10.3390/s20061594. [77] YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279. doi: 10.1145/1869790.1869829. [78] ZHAO Bei, ZHONG Yanfei, XIA Guisong, et al. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2108–2123. doi: 10.1109/TGRS.2015.2496185. [79] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023. [80] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418. [81] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002. [82] WAQAS ZAMIR S, ARORA A, GUPTA A, et al. ISAID: A large-scale dataset for instance segmentation in aerial images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 28–37. [83] SUN Xian, WANG Peijin, YAN Zhiyuan, et al. Automated high-resolution earth observation image interpretation: Outcome of the 2020 Gaofen challenge[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8922–8940. doi: 10.1109/JSTARS.2021.3106941. [84] International Society for Photogrammetry and Remote Sensing. 2D semantic labeling contest–Potsdam[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx, 2024. [85] International Society for Photogrammetry and Remote Sensing. 2D semantic labeling-Vaihingen data[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx, 2024. [86] DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: A challenge to parse the earth through satellite images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 172–181. doi: 10.1109/CVPRW.2018.00031. [87] 李雪, 姚光樂, 王洪輝, 等. 基于樣本增量學(xué)習(xí)的遙感影像分類[J]. 計(jì)算機(jī)應(yīng)用, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366.LI Xue, YAO Guangle, WANG Honghui, et al. Remote sensing image classification based on sample incremental learning[J]. Journal of Computer Applications, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366. [88] WANG Ming, YU Dayu, HE Wanting, et al. Domain-incremental learning for fire detection in space-air-ground integrated observation network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103279. doi: 10.1016/j.jag.2023.103279. [89] SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604816. doi: 10.1109/TGRS.2021.3085870. [90] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2: 565–571. doi: 10.5194/isprs-archives-XLII-2-565-2018. [91] WANG Ming, JIANG Liangcun, YUE Peng, et al. FASDD: An open-access 100, 000-level flame and smoke detection dataset for deep learning in fire detection[J]. Earth System Science Data. doi: 10.5194/essd-2023-73. [92] SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: The FLAME dataset[J]. Computer Networks, 2021, 193: 108001. doi: 10.1016/j.comnet.2021.108001. [93] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17. [94] SUMBUL G, CHARFUELAN M, DEMIR B, et al. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5901–5904. doi: 10.1109/IGARSS.2019.8900532. [95] HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2217–2226. doi: 10.1109/JSTARS.2019.2918242. [96] ZHAO Lijun, TANG Ping, and HUO Lianzhi. Feature significance-based multibag-of-visual-words model for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035004. doi: 10.1117/1.JRS.10.035004. [97] ZOU Qin, NI Lihao, ZHANG Tong, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321–2325. doi: 10.1109/LGRS.2015.2475299. [98] BASU S, GANGULY S, MUKHOPADHYAY S, et al. DeepSat: A learning framework for satellite imagery[C]. The 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, USA, 2015: 37. doi: 10.1145/2820783.2820816. [99] TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322. doi: 10.1016/j.rse.2019.111322. [100] 第八屆中國計(jì)算機(jī)學(xué)會大數(shù)據(jù)與計(jì)算智能大賽. 遙感影像地塊分割數(shù)據(jù)集[EB/OL]. https://www.datafountain.cn/competitions/475, 2020.The 8th CCF Big Data and Computing Intelligence Contest. Remote sensing image segmentation dataset[EB/OL]. https://www.datafountain.cn/competitions/475, 2020. [101] WANG Junjue, ZHENG Zhuo, MA Ailong, et al. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation[C/OL]. The 35th Conference on Neural Information Processing Systems Track on Datasets and Benchmarks, 2021: 1–12. [102] MA Xiaojie, JI Kefeng, FENG Sijia, et al. Open set recognition with incremental learning for SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5106114. doi: 10.1109/TGRS.2023.3283423. [103] KEYDEL E R, LEE S W, and MOORE J T. Mstar extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242. doi: 10.1117/12.242059. [104] HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARship: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672. [105] BAI Jing, YUAN Anran, XIAO Zhu, et al. Class incremental learning with few-shots based on linear programming for hyperspectral image classification[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5474–5485. doi: 10.1109/TCYB.2020.3032958. [106] ZHAO Wenzhi, PENG Rui, WANG Qiao, et al. Life-long learning with continual spectral-spatial feature distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5544214. doi: 10.1109/TGRS.2022.3222520. [107] GRA?A M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Pavia Centre and university[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University, 2024. [108] GRA?A M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Salinas[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas, 2024. [109] The National Center for Airborne Laser Mapping. 2013 IEEE GRSS data fusion contest-fusion of hyperspectral and LiDAR data[EB/OL]. https://hyperspectral.ee.uh.edu/?page_id, 2024. [110] BAUMGARDNER M F, BIEHL L L, and LANDGREBE D A. 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3[EB/OL]. https://purr.purdue.edu/publications/1947/1, 2015. [111] LENCZNER G, CHAN-HON-TONG A, LUMINARI N, et al. Weakly-supervised continual learning for class-incremental segmentation[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4843–4846. doi: 10.1109/IGARSS46834.2022.9884547. [112] ZHU Zining, WANG Peijin, DIAO Wenhui, et al. Few-shot incremental learning with continual prototype calibration for remote sensing image fine-grained classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196: 210–227. doi: 10.1016/j.isprsjprs.2022.12.024. [113] ZHAO Yan, ZHAO Lingjun, DING Ding, et al. Few-shot class-incremental SAR target recognition via cosine prototype learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212718. doi: 10.1109/TGRS.2023.3298016. [114] WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040. [115] XU Zekai, ZHANG Mingyi, HOU Jiayue, et al. Delving into transformer for incremental semantic segmentation[EB/OL]. https://arxiv.org/abs/2211.10253, 2022. -