一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別

孫麗婷 柳征 黃知濤

孫麗婷, 柳征, 黃知濤. 接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別[J]. 電子與信息學(xué)報, 2024, 46(10): 3966-3978. doi: 10.11999/JEIT240171
引用本文: 孫麗婷, 柳征, 黃知濤. 接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別[J]. 電子與信息學(xué)報, 2024, 46(10): 3966-3978. doi: 10.11999/JEIT240171
SUN Liting, LIU Zheng, HUANG Zhitao. Universal Radio Frequency Fingerprinting across Receiving Systems Using Receiving Domain Separation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3966-3978. doi: 10.11999/JEIT240171
Citation: SUN Liting, LIU Zheng, HUANG Zhitao. Universal Radio Frequency Fingerprinting across Receiving Systems Using Receiving Domain Separation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3966-3978. doi: 10.11999/JEIT240171

接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別

doi: 10.11999/JEIT240171
基金項目: 國家自然科學(xué)基金(62301575),國防科技大學(xué)青年自主創(chuàng)新科學(xué)基金(ZK2023-19)
詳細(xì)信息
    作者簡介:

    孫麗婷:女,講師,研究方向為信號處理、輻射源個體識別

    柳征:男,研究員,研究方向為雷達信號處理、電子對抗

    黃知濤:男,教授,研究方向為認(rèn)知電子戰(zhàn)、電子對抗

    通訊作者:

    孫麗婷 slt2009@yeah.net

  • 中圖分類號: TN97

Universal Radio Frequency Fingerprinting across Receiving Systems Using Receiving Domain Separation

Funds: The National Natural Science Foundation of China (62301575), The Youth Independent Innovation Science Fund Project of National University of Defense Technology (ZK2023-19)
  • 摘要: 受輻射源硬件失真和接收機硬件失真的耦合作用,實際接收信號中帶有當(dāng)前輻射源系統(tǒng)和接收系統(tǒng)共同的“個體信息”,導(dǎo)致輻射源指紋識別技術(shù)(RFF)在跨接收系統(tǒng)場景下無法通用。為消除接收機染色效應(yīng),該文將接收機影響作為單獨作用域,提出一種基于接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別方法。該方法通過雙標(biāo)簽多通道特征聯(lián)合和域分離對抗重構(gòu)方式實現(xiàn)信號中輻射源指紋作用域與接收機染色作用域分離,利用多部接收機數(shù)據(jù)預(yù)先訓(xùn)練網(wǎng)絡(luò)對兩種作用域的分離能力,聚焦輻射源指紋信息提取,從而提升輻射源指紋識別技術(shù)在跨平臺跨接收系統(tǒng)、更新接收設(shè)備等場景下的適應(yīng)能力。相比于直接特征提取和多接收機打包訓(xùn)練方式,所提方法能夠真正適應(yīng)實際無監(jiān)督場景,且參與訓(xùn)練的源域接收機數(shù)目越多,域適應(yīng)效果越好,不需要重復(fù)訓(xùn)練即可直接推廣應(yīng)用于新接收系統(tǒng),具有較高的實際應(yīng)用價值。
  • 圖  1  典型發(fā)射機和接收機硬件結(jié)構(gòu)

    圖  2  跨接收系統(tǒng)場景下算法示意圖

    圖  3  基于接收域分離的跨接收系統(tǒng)通用性輻射源指紋識別算法實現(xiàn)框架

    圖  4  域特征提取器結(jié)構(gòu)

    圖  5  解碼器結(jié)構(gòu)

    圖  6  單接收機直接訓(xùn)練方法跨域適應(yīng)能力

    圖  7  發(fā)射機作用域特征降維后分布圖

    圖  8  接收機作用域特征降維后分布圖

    圖  9  新接收機適應(yīng)能力測試

    表  1  輻射源失真參數(shù)設(shè)置

    標(biāo)簽 濾波器失真 I/Q不平衡 功率放大器 雜散單音與載頻泄露
    $({a_0},{a_1},{\alpha _1})$ $({b_0},{b_1},{\beta _1})$ $G$ $\tau $ $({a_1},{a_2},{a_3})$ ${a_{{\text{ST}}}}$ ${f_{{\text{ST}}}}$ $\xi ({10^{ - 3}})$
    E1 (1, 0.030, 0.25) (1, 0.030 2, 0.25) 0.999 8 –0.018 (1, 0.50, 0.30) 0.008 2 0.012 9 1.3+8.2j
    E2 (1, 0.060, 0.25) (1, 0.029 5, 0.25) 1.005 6 0.0175 (1, 0.08, 0.60) 0.007 5 0.013 2 1.5+7.2j
    E3 (1, 0.085, 0.25) (1, 0.029 0, 0.25) 1.010 2 0.012 (1, 0.01, 0.01) 0.007 0 0.012 3 1.1+6.8j
    E4 (1, 0.073, 0.25) (1, 0.031 0, 0.25) 0.999 2 0.003 (1, 0.01, 0.40) 0.008 7 0.013 5 1.7+9.0j
    E5 (1, 0.040, 0.25) (1, 0.031 3, 0.25) 0.998 2 0.024 (1, 0.60, 0.08) 0.00 90 0.011 9 2.0+6.5j
    下載: 導(dǎo)出CSV

    表  2  接收機失真參數(shù)設(shè)置

    標(biāo)簽隨機性失真確定性失真
    相位噪聲采樣抖動量化噪聲濾波器失真低噪聲放大器失真
    ($\sigma _\theta ^2$,${\varOmega _0}$) $v$ $\beta $ $({a_0},{a_1},{T_{\text{a}}})$ $({b_0},{b_1},{T_{\text}})$ $({c_1},{c_2},{c_3})$
    R1(1,0.001)0.0201(1,0.010,4)(1,0.031 5,4)(1,0.10,0.01)
    R2(1,0.010)0.0232(1,0.015,4)(1,0.030 5,4)(1,0.15,0.02)
    R3(1,0.020)0.0303(1,0.020,4)(1,0.029 5,4)(1,0.20,0.03)
    R4(1,0.021)0.0404(1,0.025,4)(1,0.028 5,4)(1,0.25,0.04)
    R5(1,0.022)0.0455(1,0.030,4)(1,0.027 5,4)(1,0.30,0.05)
    R6(1,0.023)0.0506(1,0.035,4)(1,0.026 5,4)(1,0.35,0.06)
    R7(1,0.024)0.0607(1,0.040,4)(1,0.025 5,4)(1,0.40,0.07)
    R8(1,0.025)0.0703(1,0.045,4)(1,0.024 5,4)(1,0.45,0.08)
    R9(1,0.026)0.0733(1,0.050,4)(1,0.023 5,4)(1,0.50,0.09)
    R10(1,0.027)0.0803(1,0.055,4)(1,0.022 5,4)(1,0.55,0.10)
    下載: 導(dǎo)出CSV

    表  3  單接收機直接訓(xùn)練方法的正確識別率(%)

    R1R2R3R4R5R6R7R8R9R10
    正確識別率100.00100.0099.50100.0099.5098.0098.5098.50100.0097.50
    下載: 導(dǎo)出CSV

    表  4  單接收機直接訓(xùn)練方法的跨域適應(yīng)能力統(tǒng)計(%)

    目標(biāo)域 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 均值
    平均識別率 43.00 49.50 54.50 55.94 56.67 55.50 51.44 48.83 46.28 39.00 50.07
    源域 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 均值
    平均識別率 40.39 45.67 48.11 54.11 57.11 53.11 60.22 50.50 52.44 39.00 50.07
    下載: 導(dǎo)出CSV

    表  5  多接收機打包統(tǒng)一訓(xùn)練方法的正確識別率(含跨域適應(yīng))(%)

    R1R2R3R4R5R6R7R8R9R10均值
    R1100.0098.5062.0051.0038.0021.0020.0020.0020.0020.0038.94
    R12100.00100.0099.5089.5066.5047.0029.0021.0020.0020.0049.06
    R123100.00100.00100.00100.00100.0084.0064.0040.0022.5020.0061.50
    R1234100.00100.00100.00100.00100.0099.5092.5074.0044.5023.0072.25
    R12345100.00100.00100.00100.00100.00100.00100.0093.5077.0044.5083.00
    均值100.0099.7092.3088.1080.9070.3061.1049.7036.8025.50-
    下載: 導(dǎo)出CSV

    表  6  接收域分離方法的正確識別率(%)

    R1R2R3R4R5R6R7R8R9R10均值
    R1100.0099.4889.5844.7955.2144.2737.5030.7338.5420.8351.22
    R1299.4899.4895.3189.0668.7571.8853.1356.2536.9841.1564.06
    R123100.0099.4899.48100.0093.2396.8891.1585.9479.1748.9685.05
    R1234100.00100.0096.35100.00100.0099.4897.9293.7590.1073.4492.45
    R12345100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00
    均值99.9099.6996.1486.7783.4482.5075.9473.3368.9656.88-
    下載: 導(dǎo)出CSV

    表  7  多接收域分離方法消融實驗的正確識別率(%)

    損失函數(shù)網(wǎng)絡(luò)組成識別率損失函數(shù)網(wǎng)絡(luò)組成識別率
    ${\mathcal{L}_{{\text{2 }}}} + {\mathcal{L}_{{\text{3 }}}}$RF1+RF2+EF+RC91.67${\mathcal{L}_{{\text{1 }}}} + {\mathcal{L}_{{\text{2 }}}}$RF1+RF2+EF98.44
    ${\mathcal{L}_{{\text{2 }}}} + {\mathcal{L}_{{\text{4 }}}}$RF1+RF2+EF+DE99.48${\mathcal{L}_{{\text{2 }}}} + {\mathcal{L}_{{\text{3 }}}}$RF1+EF+RC+DE95.31
    ${\mathcal{L}_{{\text{1 }}}} + {\mathcal{L}_{{\text{2 }}}}$RF1+RF2+EF+DE98.50${\mathcal{L}_{{\text{2 }}}}$EF44.50
    無GRLRF1+RF2+EF+RC+DE94.27等權(quán)重RF1+RF2+EF+RC+DE93.23
    下載: 導(dǎo)出CSV
  • [1] XU Zhengwei, HAN Guangjie, LI Liu, et al. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7066–7075. doi: 10.1109/TII.2022.3206309.
    [2] ZHA Haoran, WANG Hanhong, FENG Zhongming, et al. LT-SEI: Long-tailed specific emitter identification based on decoupled representation learning in low-resource scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 52(1): 929–943. doi: 10.1109/TITS.2023.3308716.
    [3] 韋建宇, 俞璐. 通信輻射源個體識別中的特征提取方法綜述[J]. 通信技術(shù), 2022, 55(6): 681–687. doi: 10.3969/j.issn.1002-0802.2022.06.001.

    WEI Jianyu and YU Lu. Overview of radio frequency fingerprint extraction in communication specific emitter identification[J]. Communications Technology, 2022, 55(6): 681–687. doi: 10.3969/j.issn.1002-0802.2022.06.001.
    [4] HE Boxiang and WANG Fanggang. Specific emitter identification via sparse Bayesian learning versus model-agnostic meta-learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3677–3691. doi: 10.1109/TIFS.2023.3287073.
    [5] REHMAN S U, SOWERBY K W, and COGHILL C. Analysis of impersonation attacks on systems using RF fingerprinting and low-end receivers[J]. Journal of Computer and System Sciences, 2014, 80(3): 591–601. doi: 10.1016/j.jcss.2013.06.013.
    [6] RAMSEY B W, STUBBS T D, MULLINS B E, et al. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers[J]. International Journal of Critical Infrastructure Protection, 2015, 8: 27–39. doi: 10.1016/j.ijcip.2014.11.002.
    [7] 樂波, 王桂良, 黃淵凌, 等. 接收機畸變對輻射源指紋識別的影響[J]. 電訊技術(shù), 2020, 60(3): 273–278. doi: 10.3969/j.issn.1001-893x.2020.03.005.

    LE Bo, WANG Guiliang, HUANG Yuanling, et al. Influence of receiver distortion characteristics on specific emitter identification[J]. Telecommunication Engineering, 2020, 60(3): 273–278. doi: 10.3969/j.issn.1001-893x.2020.03.005.
    [8] ZHENG Yenan, YING Wenwei, HONG Shaohua, et al. A method for cross-receiver specific emitter identification based on CBAM-CNN-BDA[C]. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2022: 1320–1324. doi: 10.1109/ICCASIT55263.2022.9987240.
    [9] FANG Yuyuan, WEI Song, ZHAO Yang, et al. Radar-specific emitter identification with only envelope power based on multidimensional complex noncentral chi-square classifier[J]. IEEE Sensors Journal, 2023, 23(17): 20223–20235. doi: 10.1109/JSEN.2023.3298352.
    [10] TAN Kaiwen, YAN Wenjun, ZHANG Limin, et al. Semi-supervised specific emitter identification based on bispectrum feature extraction CGAN in multiple communication scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 292–310. doi: 10.1109/TAES.2022.3184619.
    [11] ZHU Chenyu, LIU Liang, and PENG Xiaoyan. Specific emitter identification based on temporal convolutional network sequence processing[J]. IEEE Communications Letters, 2023, 27(10): 2667–2671. doi: 10.1109/LCOMM.2023.3312390.
    [12] WU Zitao, WANG Fanggang, and HE Boxiang. Specific emitter identification via contrastive learning[J]. IEEE Communications Letters, 2023, 27(4): 1160–1164. doi: 10.1109/LCOMM.2023.3247900.
    [13] BALDINI G, GIULIANI R, GENTILE C, et al. Measures to address the lack of portability of the RF fingerprints for radiometric identification[C]. 9th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 2018: 1–5. doi: 10.1109/NTMS.2018.8328703.
    [14] SHI Mengkai, HUANG Yuanling, and WANG Guiliang. Carrier leakage estimation method for cross-receiver specific emitter identification[J]. IEEE Access, 2021, 9: 26301–26312. doi: 10.1109/ACCESS.2021.3058167.
    [15] HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.30017210.
    [16] FAWAZ H I, DEL GROSSO G, KERDONCUFF T, et al. Deep unsupervised domain adaptation for time series classification: A benchmark[EB/OL]. https://arXiv.org/abs/2312.09857v2, 2023.
    [17] LI Ya, GONG Mingming, TIAN Xinmei, et al. Domain generalization via conditional invariant representations[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3579–3587. doi: 10.1609/aaai.v32i1.11682.
    [18] MATSUURA T and HARADA T. Domain generalization using a mixture of multiple latent domains[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11749–11756. doi: 10.1609/aaai.v34i07.6846.
    [19] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [20] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351.
    [21] SUN Liting, WANG Xiang, HUANG Zhitao, et al. Radio-frequency fingerprint extraction based on feature inhomogeneity[J]. IEEE Internet of Things Journal, 2022, 9(18): 17292–17308. doi: 10.1109/JIOT.2022.3154595.
    [22] SRIDHARAN G. Phase noise in multi-carrier systems[D]. [Master dissertation], University of Toronto, 2010.
    [23] HUANG Yuanling and ZHENG Hui. Theoretical performance analysis of radio frequency fingerprinting under receiver distortions[J]. Wireless Communications and Mobile Computing, 2015, 15(5): 823–833. doi: 10.1002/wcm.2386.
    [24] 陳翔, 汪連棟, 許雄, 等. 基于Raw I/Q和深度學(xué)習(xí)的射頻指紋識別方法綜述[J]. 雷達學(xué)報, 2023, 12(1): 214–234. doi: 10.12000/JR22140.

    CHEN Xiang, WANG Liandong, XU Xiong, et al. A review of radio frequency fingerprinting methods based on Raw I/Q and deep learning[J]. Journal of Radars, 2023, 12(1): 214–234. doi: 10.12000/JR22140.
    [25] 郭瑞鵬. 基于深度學(xué)習(xí)的雷達輻射源個體識別技術(shù)研究[D]. [碩士論文], 西安電子科技大學(xué), 2022. doi: 10.27389/d.cnki.gxadu.2022.002199.

    GUO Ruipeng. Research on individual identification technology of radar emitter based on deep learning[D]. [Master dissertation], Xidian University, 2022. doi: 10.27389/d.cnki.gxadu.2022.002199.
    [26] DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi: 10.1109/LCOMM.2018.2871465.
    [27] AL-SHAWABKA A, RESTUCCIA F, D’ORO S, et al. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio fingerprinting[C]. IEEE Conference on Computer Communications, Toronto, Canada, 2020: 646–655. doi: 10.1109/INFOCOM41043.2020.9155259.
  • 加載中
圖(9) / 表(7)
計量
  • 文章訪問數(shù):  285
  • HTML全文瀏覽量:  88
  • PDF下載量:  51
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-07-14
  • 網(wǎng)絡(luò)出版日期:  2024-07-22
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回