一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種基于自適應(yīng)容錯鏈路的片上網(wǎng)絡(luò)設(shè)計與研究

徐冬雨 歐陽一鳴 黃正峰 李建華 梁華國

徐冬雨, 歐陽一鳴, 黃正峰, 李建華, 梁華國. 一種基于自適應(yīng)容錯鏈路的片上網(wǎng)絡(luò)設(shè)計與研究[J]. 電子與信息學(xué)報, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
引用本文: 徐冬雨, 歐陽一鳴, 黃正峰, 李建華, 梁華國. 一種基于自適應(yīng)容錯鏈路的片上網(wǎng)絡(luò)設(shè)計與研究[J]. 電子與信息學(xué)報, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
XU Dongyu, OUYANG Yiming, HUANG Zhengfeng, LI Jianhua, LIANG Huaguo. A Design of On-chip Network with Self-adaptive Fault-Tolerant Link[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
Citation: XU Dongyu, OUYANG Yiming, HUANG Zhengfeng, LI Jianhua, LIANG Huaguo. A Design of On-chip Network with Self-adaptive Fault-Tolerant Link[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162

一種基于自適應(yīng)容錯鏈路的片上網(wǎng)絡(luò)設(shè)計與研究

doi: 10.11999/JEIT240162
基金項目: 國家自然科學(xué)基金( 62374049, 62174048, 62274052)
詳細信息
    作者簡介:

    徐冬雨:男,講師,研究方向為集成芯片與芯粒技術(shù)、可重構(gòu)片上互連網(wǎng)絡(luò)架構(gòu)

    歐陽一鳴:男,教授,研究方向為片上系統(tǒng)與片上網(wǎng)絡(luò)

    黃正峰:男,教授,研究方向為集成電路容錯設(shè)計

    李建華:男,副教授,研究方向為計算機體系結(jié)構(gòu)、存儲系統(tǒng)、片上網(wǎng)絡(luò)

    梁華國:男,教授,研究方向為數(shù)字系統(tǒng)設(shè)計自動化

    通訊作者:

    歐陽一鳴 oyymhfut@163.com

  • 中圖分類號: TN402

A Design of On-chip Network with Self-adaptive Fault-Tolerant Link

Funds: The National Natural Science Foundation of China (62374049, 62174048, 62274052)
  • 摘要: 隨著芯片制程不斷深入到亞微納米級別,技術(shù)節(jié)點的持續(xù)縮小加速了片上網(wǎng)絡(luò)中鏈路故障的發(fā)生。故障鏈路的增多降低了可用的路由路徑數(shù)量,并可能導(dǎo)致嚴(yán)重的流量擁塞甚至系統(tǒng)崩潰。為了保證在遭遇故障鏈路時數(shù)據(jù)包的正常傳輸,該文提出一種基于自適應(yīng)容錯鏈路的片上網(wǎng)絡(luò)設(shè)計(AFL_NoC),它能夠?qū)⒃庥龉收湘溌返臄?shù)據(jù)包轉(zhuǎn)發(fā)到另一條可逆鏈路上。該方案包括了可逆鏈路的具體實現(xiàn)以及相應(yīng)的分布式控制協(xié)議。這種動態(tài)容錯鏈路設(shè)計充分利用了網(wǎng)絡(luò)中空閑的可用鏈路資源,確保了在遭遇鏈路故障的情況下網(wǎng)絡(luò)通信不會中斷。與先進的容錯偏轉(zhuǎn)路由算法QFCAR-W相比,AFL_NoC平均延遲降低10%,面積開銷減少了14.2%,功耗開銷減少了9.3%。
  • 圖  1  可逆鏈路功能與電路實現(xiàn)

    圖  2  可逆鏈路的兩個功能實現(xiàn)

    圖  3  RFL_NoC架構(gòu)

    圖  4  路由器間自適應(yīng)鏈路的控制機制

    圖  5  路由器間鏈路的主/從狀態(tài)機

    圖  6  路由器間鏈路的永久故障

    圖  7  面向鏈路故障的容錯設(shè)計

    圖  8  不同流量模式下,各個方案在不同故障率的平均延遲隨網(wǎng)絡(luò)注入率的變化

    圖  9  不同流量模式下,各個方案在不同鏈路故障率的飽和吞吐量

  • [1] LIANG Huaguo, XU Xiumin, HUANG Zhengfeng, et al. A methodology for characterization of SET propagation in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2985–2992. doi: 10.1109/TNS.2016.2620165.
    [2] WANG Ke and LOURI A. CURE: A high-performance, low-power, and reliable network-on-chip design using reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(9): 2125–2138. doi: 10.1109/TPDS.2020.2986297.
    [3] BHOWMIK B. Maximal connectivity test with channel-open faults in on-chip communication networks[J]. Journal of Electronic Testing, 2020, 36(3): 385–408. doi: 10.1007/S10836-020-05878-1.
    [4] DITOMASO D, BORATEN T, KODI A, et al. Dynamic error mitigation in NoCs using intelligent prediction techniques[C]. 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, China, 2016: 1–12. doi: 10.1109/MICRO.2016.7783734.
    [5] CHANG Y C, GONG C S A, and CHIU C T. Fault-tolerant mesh-based NoC with router-level redundancy[J]. Journal of Signal Processing Systems, 2020, 92(4): 345–355. doi: 10.1007/S11265-019-01476-3.
    [6] GUO Pengxing, HOU Weigang, GUO Lei, et al. Fault-tolerant routing mechanism in 3D optical network-on-chip based on node reuse[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(3): 547–564. doi: 10.1109/TPDS.2019.2939240.
    [7] NARAYANASAMY P and GOPALAKRISHNAN S. Novel fault tolerance topology using corvus seek algorithm for application specific NoC[J]. Integration, 2023, 89: 146–154. doi: 10.1016/J.VLSI.2022.11.011.
    [8] SLEEBA S Z, JOSE J, and MINI M G. Energy-efficient fault tolerant technique for deflection routers in two-dimensional mesh Network-on-Chips[J]. IET Computers & Digital Techniques, 2018, 12(3): 69–79. doi: 10.1049/IET-CDT.2017.0006.
    [9] SAMALA J, TAKAWALE H, CHOKHANI Y, et al. Fault-tolerant routing algorithm for mesh based NoC using reinforcement learning[C]. 2020 24th International Symposium on VLSI Design and Test (VDAT), Bhubaneswar, India, 2020: 1–6. doi: 10.1109/VDAT50263.2020.9190340.
    [10] LIU Yi, GUO Rujia, XU Changqing, et al. A Q-learning-based fault-tolerant and congestion-aware adaptive routing algorithm for networks-on-chip[J]. IEEE Embedded Systems Letters, 2022, 14(4): 203–206. doi: 10.1109/LES.2022.3176233.
    [11] JAIN A, LAXMI V, TRIPATHI M, et al. TRACK: An algorithm for fault-Tolerant, dynamic and scalable 2D mesh network-on-chip routing reconfiguration[J]. Integration, 2020, 72: 92–110. doi: 10.1016/J.VLSI.2020.01.005.
    [12] ZHANG Ying, HONG Xinpeng, CHEN Zhongsheng, et al. A deterministic-path routing algorithm for tolerating many faults on very-large-scale network-on-chip[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2021, 26(1): 8. doi: 10.1145/3414060.
    [13] LI Jiao, QIN Chaoqun, and SUN Xuecheng. An efficient adaptive routing algorithm for the Co-optimization of fault tolerance and congestion awareness based on 3D NoC[J]. Microelectronics Journal, 2023, 142: 105989. doi: 10.1016/J.MEJO.2023.105989.
    [14] RIZK M, MARTIN K J M, and DIGUET J P. Run-time remapping algorithm of dataflow actors on NoC-based heterogeneous MPSoCs[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 3959–3976. doi: 10.1109/TPDS.2022.3177957.
    [15] WANG K, LOURI A, KARANTH A, et al. IntelliNoC: A holistic design framework for energy-efficient and reliable on-chip communication for manycores[C]. Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, USA, 2019: 589–600. doi: 10.1145/3307650.3322274.
    [16] ZHENG Hao and LOURI A. Agile: A learning-enabled power and performance-efficient network-on-chip design[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 223–236. doi: 10.1109/TETC.2020.3003496.
    [17] LAN Y C, LIN H A, LO S H, et al. A bidirectional NoC (BiNoC) architecture with dynamic self-reconfigurable channel[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, 30(3): 427–440. doi: 10.1109/TCAD.2010.2086930.
    [18] FARROKHBAKHT H, KAO H, HASAN K, et al. Pitstop: Enabling a virtual network free network-on-chip[C]. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea (South), 2021: 682–695. doi: 10.1109/HPCA51647.2021.00063.
    [19] SUN Chen, CHEN C H O, KURIAN G, et al. DSENT-a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling[C]. 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, Lyngby, Denmark, 2012: 201–210. doi: 10.1109/NOCS.2012.31.
    [20] ZHOU Wu, OUYANG Yiming, XU Dongyu, et al. Energy-efficient multiple network-on-chip architecture with bandwidth expansion[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(4): 442–455. doi: 10.1109/TVLSI.2023.3244859.
  • 加載中
圖(9)
計量
  • 文章訪問數(shù):  182
  • HTML全文瀏覽量:  93
  • PDF下載量:  25
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-09-12
  • 網(wǎng)絡(luò)出版日期:  2024-09-28
  • 刊出日期:  2024-11-01

目錄

    /

    返回文章
    返回