一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

面向SAR目標(biāo)識(shí)別成像參數(shù)敏感性的深度學(xué)習(xí)技術(shù)研究進(jìn)展

何奇山 趙凌君 計(jì)科峰 匡綱要

何奇山, 趙凌君, 計(jì)科峰, 匡綱要. 面向SAR目標(biāo)識(shí)別成像參數(shù)敏感性的深度學(xué)習(xí)技術(shù)研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 3827-3848. doi: 10.11999/JEIT240155
引用本文: 何奇山, 趙凌君, 計(jì)科峰, 匡綱要. 面向SAR目標(biāo)識(shí)別成像參數(shù)敏感性的深度學(xué)習(xí)技術(shù)研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 3827-3848. doi: 10.11999/JEIT240155
HE Qishan, ZHAO Lingjun, JI Kefeng, KUANG Gangyao. Research Progress of Deep Learning Technology for Imaging Parameter Sensitivity of SAR Target Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3827-3848. doi: 10.11999/JEIT240155
Citation: HE Qishan, ZHAO Lingjun, JI Kefeng, KUANG Gangyao. Research Progress of Deep Learning Technology for Imaging Parameter Sensitivity of SAR Target Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3827-3848. doi: 10.11999/JEIT240155

面向SAR目標(biāo)識(shí)別成像參數(shù)敏感性的深度學(xué)習(xí)技術(shù)研究進(jìn)展

doi: 10.11999/JEIT240155
詳細(xì)信息
    作者簡(jiǎn)介:

    何奇山:男,博士生,研究方向?yàn)镾AR圖像目標(biāo)檢測(cè)與識(shí)別

    趙凌君:女,副教授,研究方向?yàn)檫b感信息處理,SAR目標(biāo)自動(dòng)識(shí)別

    計(jì)科峰:男,教授,研究方向?yàn)楹铣煽讖絊AR目標(biāo)電磁散射特性建模、特征提取、檢測(cè)識(shí)別以及多源空天遙感圖像智能處理與解譯基礎(chǔ)理論、核心關(guān)鍵技術(shù)以及系統(tǒng)集成與應(yīng)用

    匡綱要:男,教授,研究方向?yàn)槲⒉ǔ上窦夹g(shù)、遙感圖像智能解譯、目標(biāo)電測(cè)建模與散射特性分析、SAR圖像目標(biāo)檢測(cè)與識(shí)別

    通訊作者:

    趙凌君 nudtzlj@163.com

  • 中圖分類(lèi)號(hào): TN958

Research Progress of Deep Learning Technology for Imaging Parameter Sensitivity of SAR Target Recognition

  • 摘要: 隨著人工智能技術(shù)的發(fā)展,基于深度神經(jīng)網(wǎng)絡(luò)的合成孔徑雷達(dá)(SAR)目標(biāo)識(shí)別得到了廣泛關(guān)注。然而,SAR系統(tǒng)的成像機(jī)制導(dǎo)致了圖像特性與成像參數(shù)之間的強(qiáng)相關(guān)性,因此深度學(xué)習(xí)框架下的目標(biāo)識(shí)別算法精度極易受成像參數(shù)敏感性的干擾,這成為了制約先進(jìn)智能算法部署到實(shí)際工程中的一大障礙。該文首先回顧了SAR圖像目標(biāo)識(shí)別技術(shù)的發(fā)展與相關(guān)數(shù)據(jù)集,從雷達(dá)工作的成像幾何、載荷參數(shù)和噪聲干擾3個(gè)角度,深入分析了成像參數(shù)變化對(duì)圖像特性的影響;然后,從模型、數(shù)據(jù)、特征3個(gè)維度,總結(jié)歸納了現(xiàn)有文獻(xiàn)關(guān)于深度學(xué)習(xí)技術(shù)對(duì)成像參數(shù)敏感性的魯棒性與泛化性這一問(wèn)題的研究進(jìn)展;接下來(lái),匯總并分析了典型方法的實(shí)驗(yàn)結(jié)果;最后討論了在未來(lái)有望突破成像參數(shù)敏感性這一問(wèn)題的深度學(xué)習(xí)技術(shù)研究方向。
  • 圖  1  不同成像條件下的SAR圖像

    圖  2  SAR成像傾斜投影幾何

    圖  3  本文對(duì)現(xiàn)有研究文獻(xiàn)的簡(jiǎn)要概括

    圖  4  各類(lèi)型屬性散射中心示意圖

    圖  5  不同分辨率條件下SAR圖像重構(gòu)方法

    圖  6  域偏移與域自適應(yīng)示意圖

    圖  7  可見(jiàn)光和SAR圖像(車(chē)輛目標(biāo))

    圖  8  可見(jiàn)光和SAR圖像(艦船目標(biāo))

    圖  9  可微分SAR圖像渲染器

    表  1  SAR目標(biāo)識(shí)別開(kāi)源數(shù)據(jù)集

    來(lái)源 數(shù)據(jù)集 目標(biāo)類(lèi)型 采集\仿真平臺(tái) 主要成像參數(shù)特點(diǎn)
    實(shí)測(cè) MSTAR[7] 軍用車(chē)輛 機(jī)載SAR (1) X波段,HH極化,帶寬561 MHz,分辨率0.3 m
    (2) 覆蓋15°,17°,30°和45° 4個(gè)俯仰角,0°~360°方位角(部分嚴(yán)重散焦圖像被剔除)
    Gotcha[18,19] 民用車(chē)輛 機(jī)載SAR (1) X波段,全極化,帶寬640 MHz
    (2) 均勻覆蓋43.7°~45°中8個(gè)俯仰角,0°~360°方位角
    CircularSAR[20] 軍用車(chē)輛 機(jī)載SAR (1) X波段,帶寬1800 MHz,分辨率0.1 m
    (2) 覆蓋15°,26°,31°和45° 4個(gè)俯仰角,0°~360°方位角(部分嚴(yán)重散焦圖像被剔除)
    SAR-ACD[21] 民用飛機(jī) GF3 C波段,HH極化,分辨率1 m
    OpenSARShip-1.0/2.0[22,23] 民用艦船 Sential-1 C波段,VV和VH極化,分辨率20~22 m
    FuSAR-Ship[24] 民用艦船 GF3 C波段,HH和VV極化,分辨率1.5 m
    仿真 SarSIM[25] 民用車(chē)輛 CST軟件 (1) X波段,HH極化,分辨率0.3 m, 3種地面環(huán)境
    (2) 覆蓋15°,17°,25°,30°,35°,40°和45° 7個(gè)俯仰角,0°~360°方位角(5°為間隔)
    SAMPLE[26] 軍用車(chē)輛 XPatch軟件 (1) X波段,HH極化,帶寬561 MHz,分辨率0.3 m
    (2) 覆蓋15°~17°俯仰角,10°~80°方位角
    下載: 導(dǎo)出CSV

    表  2  優(yōu)缺點(diǎn)及代表性方法特點(diǎn)總結(jié)

    技術(shù)類(lèi)型 優(yōu)缺點(diǎn) 代表性參考文獻(xiàn) 主要特點(diǎn)
    模型端 (1) 提升融合后特征的物理可解釋性
    (2) 傳統(tǒng)/物理特征的魯棒性仍有提升空間
    文獻(xiàn)[27] 將CNN模型與電磁散射特征融合
    文獻(xiàn)[28] 將CNN模型與傳統(tǒng)幾何特征融合
    數(shù)據(jù)端 (1) 僅需在數(shù)據(jù)端操作,易于工程實(shí)現(xiàn)
    (2) 性能受到擴(kuò)增部分?jǐn)?shù)據(jù)的質(zhì)量影響
    文獻(xiàn)[29] 使用仿射變化、圖像旋轉(zhuǎn)擴(kuò)增訓(xùn)練集
    文獻(xiàn)[30] 使用生成對(duì)抗網(wǎng)絡(luò)擴(kuò)增訓(xùn)練集
    文獻(xiàn)[31] 使用電磁仿真數(shù)據(jù)擴(kuò)增訓(xùn)練集
    特征端 (1) 泛化性提升顯著,存在理論基礎(chǔ)
    (2) 直推式學(xué)習(xí)限制實(shí)際應(yīng)用場(chǎng)景
    文獻(xiàn)[32] 在特征層上對(duì)齊分布
    文獻(xiàn)[33] 在特征層+像素層上對(duì)齊分布
    文獻(xiàn)[34] 在特征層+像素層+決策層上對(duì)齊分布
    下載: 導(dǎo)出CSV

    表  3  不同成像條件變化及其數(shù)據(jù)增強(qiáng)策略

    成像條件變化種類(lèi) 數(shù)據(jù)增強(qiáng)策略 參考文獻(xiàn)
    俯仰角變化 仿射變化,距離向重采樣 文獻(xiàn)[29,49,67]
    方位角變化 角度插值,生成對(duì)抗,電磁仿真 文獻(xiàn)[2931,6871]
    分辨率變化 頻域2維子帶分解 文獻(xiàn)[27,72,73]
    噪聲環(huán)境干擾 噪聲對(duì)抗樣本,部分散射重構(gòu) 文獻(xiàn)[68,7380]
    下載: 導(dǎo)出CSV

    表  4  機(jī)載SAR車(chē)輛目標(biāo)數(shù)據(jù)集的成像參數(shù)

    參數(shù) FARAD Ka FARAD X miniSAR
    成像地點(diǎn) 美國(guó)科特蘭空軍基地 美國(guó)新墨西哥州 美國(guó)新墨西哥州
    成像時(shí)間 2015.08 2015.10 2005.05
    波段 Ka X Ku
    中心頻率(GHz) 35.6 9.6 16.8
    帶寬(GHz) 5 3 3
    俯仰角度(°) 26~34 26~34 26~29
    分辨率(m) 0.1 0.1 0.1
    最大觀(guān)測(cè)距離(km) 6 12 8
    下載: 導(dǎo)出CSV

    表  5  艦船檢測(cè)數(shù)據(jù)集中的四種星載SAR成像參數(shù)

    參數(shù) Gaofen-3 TerraSAR-X Radarsat-2 Sentinel-1
    軌道高度(km) 755 514 798 693
    入射角度(°) 10~60 20~55 20~45 10~60
    波段 C X C C
    帶寬(MHz) 240 150 100 100
    分辨率(m) 0.5~100 1~16 1~100 5~20
    成像范圍(km) 10~650 5~100 20~50 20~400
    俯仰掃描角度(°) ±20 ±25 ±11 ±20
    下載: 導(dǎo)出CSV

    表  6  SOC與EOC條件中俯仰角變化情況

    俯仰角(°)類(lèi)別數(shù)量
    訓(xùn)練數(shù)據(jù)測(cè)試數(shù)據(jù)
    SOC(17°~15°)171510
    EOC(17°~30°)17303
    EOC(17°~45°)17453
    下載: 導(dǎo)出CSV

    表  7  MSTAR數(shù)據(jù)集上典型方法總體識(shí)別率(OA)對(duì)比(%)

    方法 類(lèi)型 SOC(17°~15°) EOC(17°~30°) EOC(17°~45°)
    A-ConvNet[11] 模型端 99.13 97.42 64.17
    文獻(xiàn)[80] 數(shù)據(jù)端 99.48 98.61 74.48
    FEC[27] 模型端 99.52 99.19 81.08
    ASC-MACN[64] 模型端 99.63 99.42
    TDDA[32] 特征端 99.11 99.17 86.65
    SDF-Net[46] 模型端 99.58 99.20 86.57
    下載: 導(dǎo)出CSV

    表  8  Gaofen3和SSDD上典型方法異源檢測(cè)性能對(duì)比(%)

    方法 Gaofen3?SSDD SSDD?Gaofen3
    PR RE mAP PR RE mAP
    FasterRCNN[119] 62.5 77.8 67.0 57.7 71.0 57.9
    文獻(xiàn)[111] 74.6 82.9 78.1 69.8 79.9 68.4
    文獻(xiàn)[110] 78.4 86.3 81.5 73.7 81.9 74.4
    文獻(xiàn)[112] 79.8 86.3 83.6 74.8 83.3 77.0
    下載: 導(dǎo)出CSV
  • [1] 馮博迪, 楊海濤, 李高源, 等. 神經(jīng)網(wǎng)絡(luò)在SAR圖像目標(biāo)識(shí)別中的研究綜述[J]. 兵器裝備工程學(xué)報(bào), 2021, 42(10): 15–22. doi: 10.11809/bqzbgcxb2021.10.003.

    FENG Bodi, YANG Haitao, LI Gaoyuan, et al. Research summary of convolutional neural network in SAR image target recognition[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 15–22. doi: 10.11809/bqzbgcxb2021.10.003.
    [2] 黃鐘泠, 姚西文, 韓軍偉. 面向SAR圖像解譯的物理可解釋深度學(xué)習(xí)技術(shù)進(jìn)展與探討[J]. 雷達(dá)學(xué)報(bào), 2021, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165
    [3] NOVAK L M, OWIRKA G J, and NETISHEN C M. Radar target identification using spatial matched filters[J]. Pattern Recognition, 1994, 27(4): 607–617. doi: 10.1016/0031-3203(94)90040-x.
    [4] 董剛剛. 基于單演信號(hào)的SAR圖像目標(biāo)識(shí)別技術(shù)研究[D]. [博士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2016.

    DONG Ganggang. Study on target recognition in SAR imagevia the monogenic signal[D]. [Ph. D. dissertation], National University of Defense Technology, 2016.
    [5] SISTERSON L K, DELANEY J R, GRAVINA S J, et al. An architecture for semi-automated radar image exploitation[J]. Lincoln Laboratory Journal, 1998, 11(2): 175–204.
    [6] MORRISON D P, ECKERT JR A C, and SHIELDS F J. Studies of advanced detection technology sensor (ADTS) data[C]. SPIE 2230, Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, 1994: 370–378. doi: 10.1117/12.177185.
    [7] ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, 1998: 566–573. doi: 10.1117/12.321859.
    [8] RESSLER M B, WILLIAMS R L, GROSS D C, et al. Bayesian multiple-look updating applied to the SHARP ATR system[C]. SPIE 4053, Algorithms for Synthetic Aperture Radar Imagery VII, Orlando, USA, 2000: 418–427. doi: 10.1117/12.396354.
    [9] 丁軍, 劉宏偉, 王英華, 等. 一種聯(lián)合陰影和目標(biāo)區(qū)域圖像的SAR目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 594–600. doi: 10.11999/JEIT140713.

    DING Jun, LIU Hongwei, WANG Yinghua, et al. SAR target recognition by combining images of the shadow region and target region[J]. Journal of Electronics & Information Technology, 2015, 37(3): 594–600. doi: 10.11999/JEIT140713.
    [10] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y.
    [11] CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720.
    [12] 杜蘭, 王兆成, 王燕, 等. 復(fù)雜場(chǎng)景下單通道SAR目標(biāo)檢測(cè)及鑒別研究進(jìn)展綜述[J]. 雷達(dá)學(xué)報(bào), 2020, 9(1): 34–54. doi: 10.12000/JR19104.

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104.
    [13] 郁文賢. 自動(dòng)目標(biāo)識(shí)別的工程視角述評(píng)[J]. 雷達(dá)學(xué)報(bào), 2022, 11(5): 737–752. doi: 10.12000/JR22178.

    YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178.
    [14] KECHAGIAS-STAMATIS O and AOUF N. Automatic target recognition on synthetic aperture radar imagery: A survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 56–81. doi: 10.1109/MAES.2021.3049857.
    [15] LI Jianwei, YU Zhentao, YU Lu, et al. A comprehensive survey on SAR ATR in deep-learning era[J]. Remote Sensing, 2023, 15(5): 1454. doi: 10.3390/rs15051454.
    [16] KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242. doi: 10.1117/12.242059.
    [17] 王璇. 分辨率與SAR目標(biāo)檢測(cè)分類(lèi)性能的關(guān)聯(lián)性研究[D]. [碩士論文], 電子科技大學(xué), 2012.

    WANG Xuan. Research on the correlation between resolution and SAR target detection and classification performance[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012.
    [18] CASTEEL JR C H, GORHAM L A, MINARDI M J, et al. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment[C]. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 97–103. doi: 10.1117/12.731457.
    [19] ERTIN E, AUSTIN C D, SHARMA S, et al. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 9–20. doi: 10.1117/12.723245.
    [20] 朱岱寅, 耿哲, 俞翔, 等. 地面目標(biāo)多角度SAR數(shù)據(jù)集構(gòu)建與目標(biāo)識(shí)別方法[J]. 南京航空航天大學(xué)學(xué)報(bào), 2022, 54(5): 985–994. doi: 10.16356/j.1005-2615.2022.05.022.

    ZHU Daiyin, GENG Zhe, YU Xiang, et al. SAR database construction for ground targets at multiple angles and target recognition method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 985–994. doi: 10.16356/j.1005-2615.2022.05.022.
    [21] SUN Xian, LV Yixuan, WANG Zhirui, et al. Scan: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi: 10.1109/TGRS.2022.3166174.
    [22] HUANG Lanqing, LIU Bin, LI Boying, et al. Opensarship: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672.
    [23] LI Boying, LIU Bin, HUANG Lanqing, et al. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in sentinel-1 imagery[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–5. doi: 10.1109/BIGSARDATA.2017.8124929.
    [24] HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-ship: Building a high-resolution SAR-AIS matchup dataset of gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi: 10.1007/s11432-019-2772-5.
    [25] MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486.
    [26] LEWIS B, SCARNATI T, SUDKAMP E, et al. A SAR dataset for ATR development: The synthetic and measured paired labeled experiment (SAMPLE)[C]. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, Baltimore, USA, 2019: 39–54. doi: 10.1117/12.2523460.
    [27] ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264.
    [28] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
    [29] WAGNER S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. doi: 10.1109/TAES.2016.160061.
    [30] 王汝意, 張漢卿, 韓冰, 等. 基于角度內(nèi)插仿真的飛機(jī)目標(biāo)多角度SAR數(shù)據(jù)集構(gòu)建方法研究[J]. 雷達(dá)學(xué)報(bào), 2022, 11(4): 637–651. doi: 10.12000/jr21193.

    WANG Ruyi, ZHANG Hanqing, HAN Bing, et al. Multiangle SAR dataset construction of aircraft targets based on angle interpolation simulation[J]. Journal of Radars, 2022, 11(4): 637–651. doi: 10.12000/JR21193. doi: 10.12000/jr21193.
    [31] LIU Lei, PAN Zongxu, QIU Xiaolan, et al. SAR target classification with CycleGAN transferred simulated samples[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4411–4414. doi: 10.1109/IGARSS.2018.8517866.
    [32] HE Qishan, ZHAO Lingjun, JI Kefeng, et al. SAR target recognition based on task-driven domain adaptation using simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019205. doi: 10.1109/LGRS.2021.3116707.
    [33] CHEN Zhuo, ZHAO Lingjun, HE Qishan, et al. Pixel-level and feature-level domain adaptation for heterogeneous SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4515205. doi: 10.1109/LGRS.2022.3214750.
    [34] SHI Yu, DU Lan, GUO Yuchen, et al. Unsupervised domain adaptation based on progressive transfer for ship detection: From optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230317. doi: 10.1109/TGRS.2022.3185298.
    [35] 化盈盈, 張岱墀, 葛仕明. 深度學(xué)習(xí)模型可解釋性的研究進(jìn)展[J]. 信息安全學(xué)報(bào), 2020, 5(3): 1–12. doi: 10.19363/J.cnki.cn10-1380/tn.2020.05.01.

    HUA Yingying, ZHANG Daichi, and GE Shiming. Research progress in the interpretability of deep learning models[J]. Journal of Cyber Security, 2020, 5(3): 1–12. doi: 10.19363/J.cnki.cn10-1380/tn.2020.05.01.
    [36] 徐豐, 金亞秋. 微波視覺(jué)與SAR圖像智能解譯[J]. 雷達(dá)學(xué)報(bào), 2024, 13(2): 285–306. doi: 10.12000/JR23225.

    XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi: 10.12000/JR23225.
    [37] XU Feng and ZHANG Xu. On the concept of semantic electromagnetics[C]. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022: 1–3. doi: 10.1109/ACES-China56081.2022.10065038.
    [38] ZHANG Tianwen and ZHANG Xiaoling. Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: What, why, where, and how[J]. Remote Sensing, 2021, 13(11): 2091. doi: 10.3390/rs13112091.
    [39] HUANG Zhongling, YAO Xiwen, LIU Ying, et al. Physically explainable CNN for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 25–37. doi: 10.1016/j.isprsjprs.2022.05.008.
    [40] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098.
    [41] DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3334–3347. doi: 10.1109/JSTARS.2017.2671919.
    [42] DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 979–983. doi: 10.1109/LGRS.2017.2692386.
    [43] WU Min, XING Mengdao, ZHANG Lei, et al. Super-resolution imaging algorithm based on attributed scattering center model[C]. 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), Xi’an, China, 2014: 271–275. doi: 10.1109/ChinaSIP.2014.6889246.
    [44] LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764.
    [45] ZHOU Yu, LI Yi, XIE Weitong, et al. A convolutional neural network combined with attributed scattering centers for SAR ATR[J]. Remote Sensing, 2021, 13(24): 5121. doi: 10.3390/rs13245121.
    [46] LIU Zhunga, WANG Longfei, WEN Zaidao, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5227914. doi: 10.1109/TGRS.2022.3174703.
    [47] FENG Sijia, JI Kefeng, ZHANG Linbin, et al. SAR target classification based on integration of asc parts model and deep learning algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10213–10225. doi: 10.1109/JSTARS.2021.3116979.
    [48] FENG Sijia, JI Kefeng, WANG Fulai, et al. PAN: Part attention network integrating electromagnetic characteristics for interpretable SAR vehicle target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204617. doi: 10.1109/TGRS.2023.3256399.
    [49] CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [50] LI Feng, YI Min, ZHANG Chaoqi, et al. POLSAR target recognition using a feature fusion framework based on monogenic signal and complex-valued nonlocal network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7859–7872. doi: 10.1109/JSTARS.2022.3194551.
    [51] LI Feng, ZHANG Chaoqi, ZHANG Xin, et al. MF-DCMANet: A multi-feature dual-stage cross manifold attention network for PolSAR target recognition[J]. Remote Sensing, 2023, 15(9): 2292. doi: 10.3390/rs15092292.
    [52] LANG Haitao, WU Siwen, and XU Yongjie. Ship classification in SAR images improved by AIS knowledge transfer[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 439–443. doi: 10.1109/LGRS.2018.2792683.
    [53] XING Xiangwei, JI Kefeng, ZOU Huanxin, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562–1566. doi: 10.1109/LGRS.2013.2262073.
    [54] MARGARIT G and TABASCO A. Ship classification in single-pol SAR images based on fuzzy logic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3129–3138. doi: 10.1109/TGRS.2011.2112371.
    [55] 呂藝璇, 王智睿, 王佩瑾, 等. 基于散射信息和元學(xué)習(xí)的SAR圖像飛機(jī)目標(biāo)識(shí)別[J]. 雷達(dá)學(xué)報(bào), 2022, 11(4): 652–665. doi: 10.12000/JR22044.

    LYU Yixuan, WANG Zhirui, WANG Peijin et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044.
    [56] KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi: 10.1109/TGRS.2023.3236987.
    [57] KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318–2331. doi: 10.1109/TKDE.2017.2720168.
    [58] HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi: 10.1016/j.isprsjprs.2020.01.016.
    [59] HUANG Zhongling, DATCU M, PAN Zongxu, et al. A hybrid and explainable deep learning framework for SAR images[C]. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 1727–1730. doi: 10.1109/IGARSS39084.2020.9323845.
    [60] HUANG Zhongling, DUMITRU C O, and REN Jun. Physics-aware feature learning of sar images with deep neural networks: A case study[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1264–1267. doi: 10.1109/IGARSS47720.2021.9554842.
    [61] LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi: 10.1109/36.789621.
    [62] LIU Jiaming, XING Mengdao, YU Hanwen, et al. EFTL: Complex convolutional networks with electromagnetic feature transfer learning for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5209811. doi: 10.1109/TGRS.2021.3083261.
    [63] FENG Sijia, JI Kefeng, MA Xiaojie, et al. Target region segmentation in SAR vehicle chip image with ACM net[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4014605. doi: 10.1109/LGRS.2021.3085188.
    [64] FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
    [65] HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physics inspired hybrid attention for SAR target recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 164–174. doi: 10.1016/j.isprsjprs.2023.12.004.
    [66] 黃鐘泠, 吳沖, 姚西文, 等. 基于時(shí)頻分析的SAR目標(biāo)微波視覺(jué)特性智能感知方法與應(yīng)用[J]. 雷達(dá)學(xué)報(bào), 2024, 13(2): 331–344. doi: 10.12000/jr23191.

    HUANG Zhongling, WU Chong, YAO Xiwen et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191. doi: 10.12000/jr23191.
    [67] TAI T, TODA M, SENZAKI K, et al. Leveraging physics-guided features for domain adaptation in SAR target classification[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 6001–6004. doi: 10.1109/IGARSS52108.2023.10283259.
    [68] DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. doi: 10.1109/LGRS.2015.2513754.
    [69] GUO Jiayi, LEI Bin, DING Chibiao, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111–1115. doi: 10.1109/LGRS.2017.2699196.
    [70] ZHANG Mingrui, CUI Zongyong, WANG Xianyuan, et al. Data augmentation method of SAR image dataset[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 5292–5295. doi: 10.1109/IGARSS.2018.8518825.
    [71] 張明蕊. SAR圖像數(shù)據(jù)分集與擴(kuò)容方法研究[D]. [碩士論文], 電子科技大學(xué), 2019.

    ZHANG Mingrui. Research of SAR image data diversity and data augmentation method[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
    [72] DING Baiyuan and WEN Gongjian. Target recognition of SAR images based on multi-resolution representation[J]. Remote Sensing Letters, 2017, 8(11): 1006–1014. doi: 10.1080/2150704X.2017.1346397.
    [73] YAN Yue. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition[J]. Journal of Electronic Imaging, 2018, 27(2): 023024. doi: 10.1117/1.JEI.27.2.023024.
    [74] WANG Ruonan, WANG Zhaocheng, XIA Kewen, et al. Target recognition in single-channel SAR images based on the complex-valued convolutional neural network with data augmentation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 796–804. doi: 10.1109/TAES.2022.3190804.
    [75] DOO S H, SMITH G, and BAKER C. Target classification performance as a function of measurement uncertainty[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 587–590. doi: 10.1109/APSAR.2015.7306277.
    [76] KWAK Y, SONG W J, and KIM S E. Speckle-noise-invariant convolutional neural network for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 549–553. doi: 10.1109/LGRS.2018.2877599.
    [77] YANG Minjia, BAI Xueru, WANG Li, et al. Mixed loss graph attention network for few-shot SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216613. doi: 10.1109/TGRS.2021.3124336.
    [78] LI Weijie, YANG Wei, ZHANG Wenpeng, et al. Hierarchical disentanglement-alignment network for robust SAR vehicle recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9661–9679. doi: 10.1109/JSTARS.2023.3324182.
    [79] DING Baiyuan and WEN Gongjian. Exploiting multi-view SAR images for robust target recognition[J]. Remote Sensing, 2017, 9(11): 1150. doi: 10.3390/rs9111150.
    [80] LV Junya and LIU Yue. Data augmentation based on attributed scattering centers to train robust CNN for SAR ATR[J]. IEEE Access, 2019, 7: 25459–25473. doi: 10.1109/ACCESS.2019.2900522.
    [81] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53–65. doi: 10.1109/MSP.2017.2765202.
    [82] AUER S, BAMLER R, and REINARTZ P. RaySAR-3D SAR simulator: Now open source[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6730–6733. doi: 10.1109/IGARSS.2016.7730757.
    [83] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750.
    [84] BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[M]. SCH?LKOPF B, PLATT J, and HOFMANN T. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference. Cambridge: The MIT Press, 2007, 19: 137–144. doi: 10.7551/mitpress/7503.003.0022.
    [85] MORENO-TORRES J G, RAEDER T, ALAIZ-RODRíGUEZ R, et al. A unifying view on dataset shift in classification[J]. Pattern Recognition, 2012, 45(1): 521–530. doi: 10.1016/j.patcog.2011.06.019.
    [86] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151–175. doi: 10.1007/s10994-009-5152-4.
    [87] LONG Mingsheng, CAO Yue, CAO Zhangjie, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071–3085. doi: 10.1109/TPAMI.2018.2868685.
    [88] SUN Baochen and SAENKO K. Deep CORAL: Correlation alignment for deep domain adaptation[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 443–450. doi: 10.1007/978-3-319-49409-8_35.
    [89] ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (CMD) for domain-invariant representation learning[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
    [90] GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. The 32nd International Conference on Machine Learning, Lile, France, 2015: 1180–1189.
    [91] SHEN Jian, QU Yanru, ZHANG Weinan, et al. Wasserstein distance guided representation learning for domain adaptation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 4058–4065. doi: 10.1609/aaai.v32i1.11784.
    [92] GHIFARY M, KLEIJN W B, ZHANG Mengjie, et al. Domain generalization for object recognition with multi-task autoencoders[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2551–2559. doi: 10.1109/iccv.2015.293.
    [93] LI Da, ZHANG Jianshu, YANG Yongxin, et al. Episodic training for domain generalization[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1446–1455. doi: 10.1109/iccv.2019.00153.
    [94] ZHOU Kaiyang, YANG Yongxin, CAVALLARO A, et al. Learning generalisable omni-scale representations for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5056–5069. doi: 10.1109/TPAMI.2021.3069237.
    [95] SHAO Rui, LAN Xiangyuan, LI Jiawei, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10015–10023. doi: 10.1109/CVPR.2019.01026.
    [96] WANG Zhen, WANG Qiansheng, LV Chengguo, et al. Unseen target stance detection with adversarial domain generalization[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020: 1–8. doi: 10.1109/IJCNN48605.2020.9206635.
    [97] 李理, 孫玉林, 曹然, 等. 基于聯(lián)合分布適配的水下聲源測(cè)距算法研究[J]. 電子與信息學(xué)報(bào), 2022, 44(6): 2061–2070. doi: 10.11999/JEIT211418.

    LI Li, SUN Yulin, CAO Ran, et al. Research on underwater source ranging algorithm based on joint distribution adaptation[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2061–2070. doi: 10.11999/JEIT211418.
    [98] 范蒼寧, 劉鵬, 肖婷, 等. 深度域適應(yīng)綜述: 一般情況與復(fù)雜情況[J]. 自動(dòng)化學(xué)報(bào), 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238.

    FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238.
    [99] ZHANG Lei and GAO Xinbo. Transfer adaptation learning: A decade survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 23–44. doi: 10.1109/TNNLS.2022.3183326.
    [100] ZHANG Wei, ZHU Yongfeng, and FU Qiang. Adversarial deep domain adaptation for multi-band SAR images classification[J]. IEEE Access, 2019, 7: 78571–78583. doi: 10.1109/ACCESS.2019.2922844.
    [101] ZHANG Yukun, GUO Xiansheng, LEUNG H, et al. Transfer learning with shared and specific structures for SAR target recognition[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1003–1006. doi: 10.1109/IGARSS46834.2022.9883216.
    [102] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]. The 37th International Conference on Machine Learning, 2020: 1597–1607.
    [103] ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. Active learning SAR image classification method crossing different imaging platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4514105. doi: 10.1109/LGRS.2022.3208468.
    [104] ZHAO Siyuan, XU Yin, LUO Ying, et al. A domain adaptation network for cross-imaging satellites sar image ship classification[C]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1580–1583. doi: 10.1109/IGARSS46834.2022.9883273.
    [105] ZHAO Siyuan, ZHANG Zenghui, ZHANG Tao, et al. Transferable SAR image classification crossing different satellites under open set condition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4506005. doi: 10.1109/LGRS.2022.3159179.
    [106] GU Xiang, SUN Jian, and XU Zongben. Spherical space domain adaptation with robust pseudo-label loss[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9098–9107. doi: 10.1109/CVPR42600.2020.00912.
    [107] GAO Zhiqiang, ZHANG Shufei, HUANG Kaizhu, et al. Gradient distribution alignment certificates better adversarial domain adaptation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8917–8926. doi: 10.1109/ICCV48922.2021.00881.
    [108] ZOU Bin, QIN Jiang, and ZHANG Lamei. Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 200: 173–190. doi: 10.1016/j.isprsjprs.2023.05.009.
    [109] SHI Yu, DU Lan, and GUO Yuchen. Unsupervised domain adaptation for SAR target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6372–6385. doi: 10.1109/JSTARS.2021.3089238.
    [110] ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A feature decomposition-based method for automatic ship detection crossing different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234015. doi: 10.1109/TGRS.2022.3201628.
    [111] ZHAO Siyuan, ZHANG Zenghui, GUO Weiwei, et al. An automatic ship detection method adapting to different satellites SAR images with feature alignment and compensation loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225217. doi: 10.1109/TGRS.2022.3160727.
    [112] ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A domain specific knowledge extraction transformer method for multisource satellite-borne SAR images ship detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 16–29. doi: 10.1016/j.isprsjprs.2023.02.011.
    [113] ROSTAMI M, KOLOURI S, EATON E, et al. Deep transfer learning for few-shot SAR image classification[J]. Remote Sensing, 2019, 11(11): 1374. doi: 10.3390/rs11111374.
    [114] SONG Yucheng, LI Jingrun, GAO Peng, et al. Two-stage cross-modality transfer learning method for military-civilian SAR ship recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4506405. doi: 10.1109/LGRS.2022.3162707.
    [115] ZHAO Shuangmei and LANG Haitao. Improving deep subdomain adaptation by dual-branch network embedding attention module for SAR ship classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8038–8048. doi: 10.1109/JSTARS.2022.3206753.
    [116] GUO Yuchen, DU Lan, and LYU Guoxin. SAR target detection based on domain adaptive faster R-CNN with small training data size[J]. Remote Sensing, 2021, 13(21): 4202. doi: 10.3390/rs13214202.
    [117] ZHANG Jun, LI Simin, DONG Yongfeng, et al. Hierarchical similarity alignment for domain adaptive ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240611. doi: 10.1109/TGRS.2022.3227626.
    [118] ZHANG Yukun, GUO Xiansheng, LI Lin, et al. Deep knowledge integration of heterogeneous features for domain adaptive SAR target recognition[J]. Pattern Recognition, 2022, 126: 108590. doi: 10.1016/j.patcog.2022.108590.
    [119] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [120] LEI Zhengxin, XU Feng, WEI Jiangtao, et al. SAR-NeRF: Neural radiance fields for synthetic aperture radar multi-view representation[EB/OL]. https://arxiv.org/abs/2307.05087, 2023.
    [121] FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069.
    [122] 仇曉蘭, 焦?jié)衫? 楊振禮, 等. 微波視覺(jué)三維SAR關(guān)鍵技術(shù)及實(shí)驗(yàn)系統(tǒng)初步進(jìn)展[J]. 雷達(dá)學(xué)報(bào), 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [123] CHANG Yupeng, WANG Xu, WANG Jindong, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3): 39. doi: 10.1145/3641289.
    [124] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 3992–4003. doi: 10.1109/ICCV51070.2023.00371.
    [125] WOOLLARD M, BLACKNELL D, GRIFFITHS H, et al. SARCASTIC v2.0—high-performance SAR simulation for next-generation ATR systems[J]. Remote Sensing, 2022, 14(11): 2561. doi: 10.3390/rs14112561.
    [126] 董純柱, 胡利平, 朱國(guó)慶, 等. 地面車(chē)輛目標(biāo)高質(zhì)量SAR圖像快速仿真方法[J]. 雷達(dá)學(xué)報(bào), 2015, 4(3): 351–360. doi: 10.12000/JR15057.

    DONG Chunzhu, HU Liping, ZHU Guoqing et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 2015, 4(3): 351–360. doi: 10.12000/JR15057.
    [127] NIU Shengren, QIU Xiaolan, LEI Bin, et al. A SAR target image simulation method with DNN embedded to calculate electromagnetic reflection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2593–2610. doi: 10.1109/JSTARS.2021.3056920.
    [128] WEI Jiangtao, LUOMEI Yixiang, ZHANG Xu, et al. Learning surface scattering parameters from SAR images using differentiable ray tracing[EB/OL]. https://arxiv.org/abs/2401.01175, 2024.
    [129] LV Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-aided SAR target classification via dual-branch reconstruction and subdomain alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5214414. doi: 10.1109/TGRS.2023.3305094.
    [130] SHI Yu, DU Lan, LI Chen, et al. Unsupervised domain adaptation for SAR target classification based on domain- and class-level alignment: From simulated to real data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 1–13. doi: 10.1016/j.isprsjprs.2023.11.010.
    [131] GUO Qian, XU Huilin, and XU Feng. Causal adversarial autoencoder for disentangled SAR image representation and few-shot target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5221114. doi: 10.1109/TGRS.2023.3330478.
    [132] LI Weijie, YANG Wei, LIU Li, et al. Discovering and explaining the noncausality of deep learning in SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4004605. doi: 10.1109/LGRS.2023.3266493.
    [133] LIU Jiaxiang, LIU Zhunga, ZHANG Zuowei, et al. A new causal inference framework for SAR target recognition[J]. IEEE Transactions on Artificial Intelligence, 2024: 1–15. doi: 10.1109/TAI.2024.3357664.
  • 加載中
圖(9) / 表(8)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  850
  • HTML全文瀏覽量:  289
  • PDF下載量:  158
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-07-21
  • 網(wǎng)絡(luò)出版日期:  2024-08-03
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回