一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

利用近清圖像空間搜索的深度圖像先驗降噪模型

徐少平 熊明海 周常飛

徐少平, 熊明海, 周常飛. 利用近清圖像空間搜索的深度圖像先驗降噪模型[J]. 電子與信息學(xué)報, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114
引用本文: 徐少平, 熊明海, 周常飛. 利用近清圖像空間搜索的深度圖像先驗降噪模型[J]. 電子與信息學(xué)報, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114
XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114
Citation: XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229-4235. doi: 10.11999/JEIT240114

利用近清圖像空間搜索的深度圖像先驗降噪模型

doi: 10.11999/JEIT240114
基金項目: 國家自然科學(xué)基金(62162043)
詳細(xì)信息
    作者簡介:

    徐少平:男,博士,教授,博士生導(dǎo)師,研究方向為數(shù)字圖像處理、機(jī)器視覺、虛擬手術(shù)模擬

    熊明海:男,碩士生,研究方向為數(shù)字圖像處理、機(jī)器視覺

    周常飛:男,碩士生,研究方向為數(shù)字圖像處理、機(jī)器視覺

    通訊作者:

    徐少平 xushaoping@ncu.edu.cn

  • 中圖分類號: TN911.73; TP391.4

Deep Image Prior Denoising Model Using Relatively Clean Image Space Search

Funds: The National Natural Science Foundation of China (62162043)
  • 摘要: 鑒于深度圖像先驗(DIP)降噪模型的性能高度依賴于目標(biāo)圖像所確定的搜索空間,該文提出一種新的基于近清圖像空間搜索策略的改進(jìn)降噪模型。首先,使用當(dāng)前兩種主流有監(jiān)督降噪模型對同一場景下兩張噪聲圖像分別進(jìn)行降噪,所獲得兩張降噪后圖像稱為近清圖像;其次,采用隨機(jī)采樣融合法將兩張近清圖像融合后作為網(wǎng)絡(luò)輸入,同時以兩張近清圖像替換噪聲圖像作為雙目標(biāo)圖像以更好地約束搜索空間,進(jìn)而在更為接近參考圖像的空間范圍內(nèi)搜索可能的圖像作為降噪后圖像;最后,將原DIP模型的多尺度UNet網(wǎng)絡(luò)簡化為單尺度模式,同時引入Transformer模塊以增強(qiáng)網(wǎng)絡(luò)對長距離像素點(diǎn)之間的建模能力,從而在保證網(wǎng)絡(luò)搜索能力的基礎(chǔ)上提升模型的執(zhí)行效率。實(shí)驗結(jié)果表明:所提改進(jìn)模型在降噪效果和執(zhí)行效率兩個方面顯著優(yōu)于原DIP模型,在降噪效果方面也超過了主流有監(jiān)督降噪模型。
  • 圖  1  RS-DIP降噪模型降噪原理的可視化示意圖

    圖  2  RS-DIP網(wǎng)絡(luò)模型框架圖

    圖  3  各對比方法在PolyU圖像上的降噪效果對比

    表  1  不同降噪模型組合對降噪性能的影響(dB)

    算法組合 Restormer+
    DnCNN
    Restormer+
    FFDNet
    Restormer+
    DAGL
    DAGL+
    DnCNN
    DAGL+
    FFDNet
    DAGL+
    SwinIR
    Restormer+
    SwinIR
    1 36.33 36.29 35.79 36.19 35.77 36.08 36.44
    2 36.74 36.64 36.06 36.43 36.14 36.48 36.84
    3 35.25 34.78 34.78 34.78 35.57 35.28 35.03
    4 31.33 31.49 31.48 31.55 31.56 31.62 31.58
    5 38.41 37.00 37.57 38.21 36.86 37.30 37.31
    6 38.51 40.11 38.53 38.40 39.72 39.82 40.23
    7 30.19 30.27 30.02 29.58 29.78 29.77 30.32
    8 34.52 34.69 34.17 33.78 33.98 34.03 34.70
    9 35.83 35.41 34.79 34.53 34.81 34.80 35.50
    10 36.65 36.38 36.04 36.14 35.85 35.94 36.48
    平均值 35.27 35.31 34.98 34.96 35.00 35.11 35.44
    下載: 導(dǎo)出CSV

    表  2  隨機(jī)采樣操作對模型降噪性能的影響比較(dB)

    對比算法RS-DIP-1RS-DIP
    136.4236.44
    236.9036.84
    334.9335.03
    431.5931.58
    537.1837.31
    640.1440.23
    730.3030.32
    834.7034.70
    935.4935.50
    1036.3636.48
    平均值35.4035.44
    下載: 導(dǎo)出CSV

    表  3  簡化骨干網(wǎng)絡(luò)對模型降噪性能的影響(dB)

    對比算法RS-DIP-2RS-DIP
    136.2236.44
    236.7936.84
    335.0735.03
    431.4831.58
    536.8337.31
    640.2140.23
    730.3130.32
    834.5434.70
    935.4335.50
    1036.2036.48
    平均值35.3135.44
    下載: 導(dǎo)出CSV

    表  4  各對比方法在各真實(shí)噪聲數(shù)據(jù)集上所獲得的PSNR值比較(dB)

    數(shù)據(jù)集 PolyU NIND SIDD
    BM3D 33.90 32.87 38.00
    DnCNN 33.28 31.33 32.84
    FFDNet 34.25 32.72 37.54
    DAGL 33.44 32.10 42.47
    Restormer* 33.47 35.20 44.17
    SwinIR* 34.45 33.84 37.24
    DIP 34.43 33.79 39.42
    RS-DIP 35.44 35.46 44.60
    *表示該模型被用于處理噪聲圖像,在NIND和PolyU數(shù)據(jù)集上分別使用Restormer和SwinIR作為預(yù)處理算法處理不同的噪聲圖像,而在SIDD數(shù)據(jù)集上僅使用Restormer作為預(yù)處理算法處理兩張噪聲圖像。
    下載: 導(dǎo)出CSV
  • [1] JIN Xin, ZHANG Li, SHAN Chaowei, et al. Dual prior learning for blind and blended image restoration[J]. IEEE Transactions on Image Processing, 2022, 31: 1042–1056. doi: 10.1109/TIP.2021.3135482.
    [2] 白勇強(qiáng), 禹晶, 李一秾, 等. 基于深度先驗的盲圖像去模糊算法[J]. 電子學(xué)報, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.

    BAI Yongqiang, YU Jing, LI Yinong et al. Deep prior-based blind image deblurring[J]. Acta Electronica Sinica, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.
    [3] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [4] GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: From classical to state-of-the-art approaches[J]. Information Fusion, 2020, 55: 220–244. doi: 10.1016/j.inffus.2019.09.003.
    [5] 周建新, 周鳳祺. 基于改進(jìn)協(xié)同量子粒子群的小波去噪分析研究[J]. 電光與控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.
    [6] 曾理, 熊西林, 陳偉. 低劑量CT圖像降噪的深度圖像先驗的目標(biāo)偏移加速算法[J]. 電子與信息學(xué)報, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.

    ZENG Li, XIONG Xilin, and CHEN Wei. Deep image prior acceleration method for target offset in low-dose CT images denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.
    [7] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [8] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [9] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    [10] ANWAR S and BARNES N. Real image denoising with feature attention[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3155–3164. doi: 10.1109/ICCV.2019.00325.
    [11] LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [12] KRULL A, BUCHHOLZ T O, and JUG F. Noise2void-learning denoising from single noisy images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2124–2132. doi: 10.1109/CVPR.2019.00223.
    [13] HUANG Tao, LI Songjiang, JIA Xu, et al. Neighbor2Neighbor: Self-supervised denoising from single noisy images[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14776–14785. doi: 10.1109/CVPR46437.2021.01454.
    [14] LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454. doi: 10.1109/CVPR.2018.00984.
    [15] HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. https://arxiv.org/abs/1606.08415, 2023.
    [16] XU Jun, LI Hui, LIANG Zhetong, et al. Real-world noisy image denoising: A new benchmark[EB/OL]. https://arxiv.org/abs/1804.02603, 2018.
    [17] YANG Yu, XU Haifeng, QI Bin, et al. Stroke screening data modeling based on openEHR and NINDS Stroke CDE[C]. 2020 IEEE International Conference on BioInformatics and BioMedicine (BIBM), Seoul, Korea (South), 2020: 2147–2152. doi: 10.1109/BIBM49941.2020.9313127.
    [18] ABDELHAMED A, LIN S, and BROWN M S. A high-quality denoising dataset for smartphone cameras[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1692–1700. doi: 10.1109/CVPR.2018.00182.
    [19] 徐勝軍, 楊華, 李明海, 等. 基于雙頻域特征聚合的低照度圖像增強(qiáng)[J]. 光電工程, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.

    XU Shengjun, YANG Hua, LI Minghai, et al. Low-light image enhancement based on dual-frequency domain feature aggregation[J]. Opto-Electronic Engineering, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.
    [20] SOH J W, CHO S, and CHO N I. Meta-transfer learning for zero-shot super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3513–3522. doi: 10.1109/CVPR42600.2020.00357.
  • 加載中
圖(3) / 表(4)
計量
  • 文章訪問數(shù):  185
  • HTML全文瀏覽量:  74
  • PDF下載量:  17
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-09-07
  • 網(wǎng)絡(luò)出版日期:  2024-09-29
  • 刊出日期:  2024-11-10

目錄

    /

    返回文章
    返回