聯(lián)合多曝光融合和圖像去模糊的深度網(wǎng)絡(luò)
doi: 10.11999/JEIT240113
-
1.
華南理工大學(xué)自動(dòng)化科學(xué)與工程學(xué)院 廣州 510641
-
2.
華南理工大學(xué)自主系統(tǒng)與網(wǎng)絡(luò)控制教育部重點(diǎn)實(shí)驗(yàn)室 廣州 510641
-
3.
華南理工大學(xué)軟件學(xué)院 廣州 510006
-
4.
華南理工大學(xué)大數(shù)據(jù)與智能機(jī)器人教育部重點(diǎn)實(shí)驗(yàn)室 廣州 510641
Deep Network for Joint Multi-exposure Fusion and Image Deblur
-
1.
School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
-
2.
Key Laboratory of Autonomous Systems and Network Control, Ministry of Education, South China University of Technology, Guangzhou 510641, China
-
3.
School of Software Engineering, South China University of Technology, Guangzhou 510006, China
-
4.
Key Laboratory of Big Data and Intelligent Robotics, Ministry of Education, South China University of Technology, Guangzhou 510641, China
-
摘要: 多曝光圖像融合可提高圖像的動(dòng)態(tài)范圍,從而獲取高質(zhì)量的圖像。對(duì)于在像自動(dòng)駕駛等快速運(yùn)動(dòng)場(chǎng)景中獲得的模糊的長(zhǎng)曝光圖像,利用通用的圖像融合方法將其直接與低曝光圖像融合得到的圖像質(zhì)量并不高。目前暫缺乏對(duì)帶有運(yùn)動(dòng)模糊的長(zhǎng)曝光和短曝光圖像的端到端融合方法?;诖?該文提出一種聯(lián)合多曝光融合和圖像去模糊的深度網(wǎng)絡(luò)(DF-Net)端到端地解決帶有運(yùn)動(dòng)模糊的長(zhǎng)短曝光圖像融合問題。該方法提出一種結(jié)合小波變換的殘差模塊用于構(gòu)建編碼器和解碼器,其中設(shè)計(jì)單個(gè)編碼器對(duì)短曝光圖像進(jìn)行特征提取,構(gòu)建基于編碼器和解碼器的多級(jí)結(jié)構(gòu)對(duì)帶有模糊的長(zhǎng)曝光圖像進(jìn)行特征提取,設(shè)計(jì)殘差均值激勵(lì)融合模塊進(jìn)行長(zhǎng)短曝光特征的融合,最后通過解碼器重建圖像。由于缺少基準(zhǔn)數(shù)據(jù)集,創(chuàng)建了基于數(shù)據(jù)集 SICE 的帶有運(yùn)動(dòng)模糊的多曝光融合數(shù)據(jù)集,用于模型的訓(xùn)練與測(cè)試。最后,從定性和定量的角度將所設(shè)計(jì)的模型和方法和其他先進(jìn)的圖像去模糊和多曝光融合的分步優(yōu)化方法進(jìn)行了實(shí)驗(yàn)對(duì)比,驗(yàn)證了該文的模型和方法對(duì)帶有運(yùn)動(dòng)模糊的多曝光圖像融合的優(yōu)越性。并在移動(dòng)車輛上采集到的多曝光數(shù)據(jù)組上進(jìn)行驗(yàn)證,結(jié)果顯示了所提方法解決實(shí)際問題的有效性。Abstract: Multi-exposure image fusion is used to enhance the dynamic range of images, resulting in higher-quality outputs. However, for blurred long-exposure images captured in fast-motion scenes, such as autonomous driving, the image quality achieved by directly fusing them with low-exposure images using generalized fusion methods is often suboptimal. Currently, end-to-end fusion methods for combining long and short exposure images with motion blur are lacking. To address this issue, a Deblur Fusion Network (DF-Net) is proposed to solve the problem of fusing long and short exposure images with motion blur in an end-to-end manner. A residual module combined with wavelet transform is proposed for constructing the encoder and decoder, where a single encoder is designed for the feature extraction of short exposure images, a multilevel structure based on encoder and decoder is built for feature extraction of long exposure images with blurring, a residual mean excitation fusion module is designed for the fusion of the long and short exposure features, and finally the image is reconstructed by the decoder. Due to the lack of a benchmark dataset, a multi-exposure fusion dataset with motion blur based on the dataset SICE is created for model training and testing. Finally, the designed model and method are experimentally compared with other state-of-the-art step-by-step optimization methods for image deblurring and multi-exposure fusion from both qualitative and quantitative perspectives to verify the superiority of the model and method in this paper for multi-exposure image fusion with motion blur. The validation is also conducted on a multi-exposure dataset acquired from a moving vehicle, and the effectiveness of the proposed method in solving practical problems is demonstrated by the results.
-
Key words:
- Multi-exposure image fusion /
- Image deblurring /
- Wavelet transform /
- Feature fusion
-
表 1 DF-Net與Deblur+MEF策略下最優(yōu)方法在PSNR和SSIM上的比較
方法組合 DPE-MEF [15] IFCNN [16] MEFNet[17] U2fusion[18] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM DMPHN [12] 18.012 0 0.822 6 19.470 0 0.813 5 16.630 0 0.746 0 18.075 9 0.700 9 MIMO-UNet [13] 18.138 9 0.835 7 19.803 2 0.835 5 17.026 8 0.774 8 18.269 2 0.716 1 DeepRFT [14] 19.052 9 0.912 8 20.517 4 0.906 0 18.154 6 0.870 8 18.760 7 0.752 9 DF-Net PSNR = 21.712 6 SSIM = 0.924 6 下載: 導(dǎo)出CSV
表 2 DF-Net與MEF+Deblur策略下最優(yōu)方法在PSNR和SSIM上的比較
方法組合 DPE-MEF [15] IFCNN[16] MEFNet[17] U2fusion[18] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM DMPHN [12] 18.273 4 0.799 8 19.701 4 0.856 4 18.415 5 0.778 1 17.449 2 0.605 0 MIMO-UNet [13] 20.089 6 0.873 1 20.187 9 0.876 1 18.601 4 0.797 1 19.563 0 0.815 0 DeepRFT[14] 19.913 3 0.871 6 19.704 0 0.885 9 18.779 3 0.819 1 19.918 2 0.809 6 DF-Net PSNR = 21.712 6 SSIM = 0.924 6 下載: 導(dǎo)出CSV
表 4 模塊消融實(shí)驗(yàn)比較
小波殘差模塊 RMEFB PSNR SSIM 實(shí)驗(yàn)1 × × 21.216 1 0.912 4 實(shí)驗(yàn)2 × √ 21.352 1 0.917 2 實(shí)驗(yàn)3 √ × 21.602 4 0.919 6 DF-Net √ √ 21.712 6 0.924 6 下載: 導(dǎo)出CSV
-
[1] LI Shutao and KANG Xudong. Fast multi-exposure image fusion with median filter and recursive filter[J]. IEEE Transactions on Consumer Electronics, 2012, 58(2): 626–632. doi: 10.1109/TCE.2012.6227469. [2] MERTENS T, KAUTZ J, and VAN REETH F. Exposure fusion[C]. The 15th Pacific Conference on Computer Graphics and Applications, Maui, USA, 2007: 382–390. doi: 10.1109/PG.2007.17. [3] ZHANG Hao and MA Jiayi. IID-MEF: A multi-exposure fusion network based on intrinsic image decomposition[J]. Information Fusion, 2023, 95: 326–340. doi: 10.1016/j.inffus.2023.02.031. [4] LI Jiawei, LIU Jinyuan, ZHOU Shihua, et al. Learning a coordinated network for detail-refinement multiexposure image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 713–727. doi: 10.1109/TCSVT.2022.3202692. [5] KIM T H, AHN B, and LEE K M. Dynamic scene deblurring[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 3160–3167. doi: 10.1109/ICCV.2013.392. [6] 楊愛萍, 李磊磊, 張兵, 等. 基于輕量化漸進(jìn)式殘差網(wǎng)絡(luò)的圖像快速去模糊[J]. 電子與信息學(xué)報(bào), 2022, 44(5): 1674–1682. doi: 10.11999/JEIT210298.YANG Aiping, LI Leilei, ZHANG Bing, et al. Fast image deblurring based on the lightweight progressive residual network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1674–1682. doi: 10.11999/JEIT210298. [7] TSAI F J, PENG Y T, LIN Y Y, et al. Stripformer: Strip transformer for fast image deblurring[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 146–162. doi: 10.1007/978-3-031-19800-7_9. [8] CHEN Liangyu, CHU Xiaojie, ZHANG Xiangyu, et al. Simple baselines for image restoration[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 17–33. doi: 10.1007/978-3-031-20071-7_2. [9] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14821–14831. doi: 10.1109/CVPR46437.2021.01458. [10] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745. [11] SODANO M, MAGISTRI F, GUADAGNINO T, et al. Robust double-encoder network for RGB-D panoptic segmentation[C]. 2023 IEEE International Conference on Robotics and Automation, London, UK, 2023: 4953–4959. doi: 10.1109/ICRA48891.2023.10160315. [12] ZHANG Hongguang, DAI Yuchao, LI Hongdong, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5978–5986. doi: 10.1109/CVPR.2019.00613. [13] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4641–4650. doi: 10.1109/ICCV48922.2021.00460. [14] MAO Xintian, LIU Yiming, LIU Fengze, et al. Intriguing findings of frequency selection for image deblurring[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 1905–1913. doi: 10.1609/aaai.v37i2.25281. [15] HAN Dong, LI Liang, GUO Xiaojie, et al. Multi-exposure image fusion via deep perceptual enhancement[J]. Information Fusion, 2022, 79: 248–262. doi: 10.1016/j.inffus.2021.10.006. [16] ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99–118. doi: 10.1016/j.inffus.2019.07.011. [17] MA Kede, DUANMU Zhengfang, ZHU Hanwei, et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 2808–2819. doi: 10.1109/TIP.2019.2952716. [18] XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/TPAMI.2020.3012548. -