一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

通信干擾信道和功率智能決策算法

周成 林茜 馬叢珊 應(yīng)濤 滿欣

周成, 林茜, 馬叢珊, 應(yīng)濤, 滿欣. 通信干擾信道和功率智能決策算法[J]. 電子與信息學(xué)報, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100
引用本文: 周成, 林茜, 馬叢珊, 應(yīng)濤, 滿欣. 通信干擾信道和功率智能決策算法[J]. 電子與信息學(xué)報, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100
ZHOU Cheng, LIN Qian, MA Congshan, YING Tao, MAN Xin. Intelligent Decision-making for Selection of Communication Jamming Channel and Power[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100
Citation: ZHOU Cheng, LIN Qian, MA Congshan, YING Tao, MAN Xin. Intelligent Decision-making for Selection of Communication Jamming Channel and Power[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100

通信干擾信道和功率智能決策算法

doi: 10.11999/JEIT240100
基金項目: 國家自然科學(xué)基金(61501484)
詳細(xì)信息
    作者簡介:

    周成:男,講師,博士,研究方向為通信信號處理及智能干擾

    林茜:女,副教授,研究方向為數(shù)據(jù)鏈及通信干擾

    馬叢珊:女,講師,研究方向為通信信號處理及智能干擾

    應(yīng)濤:男,講師,研究方向為認(rèn)知電子戰(zhàn)

    滿欣:男,副教授,研究方向為通信信號處理

    通訊作者:

    林茜 linqian19825@163.com

  • 中圖分類號: TN975

Intelligent Decision-making for Selection of Communication Jamming Channel and Power

Funds: The National Natural Science Foundation of China (61501484)
  • 摘要: 智能干擾是一種利用環(huán)境反饋自主學(xué)習(xí)干擾策略,對敵方通信鏈路進行有效干擾的技術(shù)。然而,現(xiàn)有的智能干擾研究大多假設(shè)干擾機能夠直接獲取通信質(zhì)量反饋(如誤碼率或丟包率),這在實際對抗環(huán)境中難以實現(xiàn),限制了智能干擾的應(yīng)用范圍。為了解決這一問題,該文將通信干擾問題建模為馬爾科夫決策過程(MDP),綜合考慮干擾基本原則和通信目標(biāo)行為變化制定干擾效能衡量指標(biāo),提出了一種改進的策略爬山算法(IPHC)。該算法按照“觀察(Observe)-調(diào)整(Orient)-決策(Decide)-行動(Act)”的OODA閉環(huán),實時觀察通信目標(biāo)變化,靈活調(diào)整干擾策略,運用混合策略決策,實施通信干擾。仿真結(jié)果表明,在通信目標(biāo)采用確定性規(guī)避策略時,所提算法能夠較快收斂到最優(yōu)干擾策略,并且其收斂耗時較Q-learning算法至少縮短2/3;當(dāng)通信目標(biāo)變換策略時,能夠自適應(yīng)學(xué)習(xí),重新調(diào)整到最優(yōu)干擾策略。在通信目標(biāo)采用混合性規(guī)避策略時,所提算法也能夠快速收斂,取得較優(yōu)的干擾效果。
  • 圖  1  干擾模型示意圖

    圖  2  智能干擾算法示意圖

    圖  3  通信干擾規(guī)避策略一時,各算法干擾回報

    圖  4  通信干擾規(guī)避策略二時,各算法干擾回報

    圖  5  通信干擾規(guī)避策略三時,各算法干擾回報

    1  基于IPHC的通信干擾信道和功率智能決策算法

     參數(shù)設(shè)置:$ Q\left( {{\boldsymbol{s}},{\boldsymbol{a}}} \right) = 0 $,$ {\pi} \left( {{\boldsymbol{s}},{\boldsymbol{a}}} \right) = {1 \mathord{\left/ {\vphantom {1 {\left| A \right|}}} \right. } {\left| A \right|}} $,更新步長$\alpha $和學(xué)習(xí)率$\eta $。
     學(xué)習(xí)過程:令$t = 0$,在狀態(tài)${{\boldsymbol{s}}_t}$,依據(jù)$ {\pi} \left( {{{\boldsymbol{s}}_t},{\boldsymbol{a}}} \right) $得到動作${{\boldsymbol{a}}_t}$,并轉(zhuǎn)移到下一狀態(tài)${{\boldsymbol{s}}_{t + 1}}$。
     while $t < T$
      由${{\boldsymbol{s}}_t}$和${{\boldsymbol{s}}_{t + 1}}$之間的關(guān)系,評估獎勵:$ {r_t} = {w_1}{\varphi _1}\left( {{\text{JNSR}} - {T_{\text{h}}}} \right) + {w_2}\mu \left( {{f_{{\text{c}},t + 1}} - {f_{{\text{c}},t}}} \right) + {w_3}{\varphi _2}\left( {{p_{{\text{c}},t + 1}} - {p_{{\text{c}},t}}} \right) - {w_4}{{{p_{{\text{j}},t + 1}}} \mathord{\left/ {\vphantom {{{p_{{\text{j}},t + 1}}} {{P_{{\text{jMax}}}}}}} \right. } {{P_{{\text{jMax}}}}}} $;
      依據(jù)獎勵$ {r_t} $,調(diào)整Q值表:$ Q\left( {{{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t}} \right) = Q\left( {{{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t}} \right) + \alpha \left[ {{r_t} + \gamma \mathop {\max }\limits_{\boldsymbol{a}} Q\left( {{{\boldsymbol{s}}_{t + 1}},{\boldsymbol{a}}} \right) - Q\left( {{{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t}} \right)} \right] $;
      依據(jù)Q值表調(diào)整策略,并進行歸一化:$ {\pi} \left({\boldsymbol{s}},{\boldsymbol{a}}\right)={\pi} \left({\boldsymbol{s}},{\boldsymbol{a}}\right)+\eta ,\;\;{\boldsymbol{a}}=\mathrm{arg}\underset{{{\boldsymbol{a}}}^{\prime }}{\mathrm{max}}Q\left({\boldsymbol{s}},{\boldsymbol{{a}}}^{\prime }\right) $,$ {\pi} \left( {{\boldsymbol{s}},{{\boldsymbol{a}}_i}} \right) = {{{\pi} \left( {{\boldsymbol{s}},{{\boldsymbol{a}}_i}} \right)} \Bigr/ {\displaystyle\sum\limits_{i = 1}^{M \times K} {{\pi} \left( {{\boldsymbol{s}},{{\boldsymbol{a}}_i}} \right)} }} $;
      轉(zhuǎn)入下一時刻,$t = t + 1$,在狀態(tài)${{\boldsymbol{s}}_t}$,依據(jù)$ {\pi} \left( {{{\boldsymbol{s}}_t},{\boldsymbol{a}}} \right) $得到動作${{\boldsymbol{a}}_t}$,并轉(zhuǎn)移到下一狀態(tài)${{\boldsymbol{s}}_{t + 1}}$。
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)設(shè)置

    參數(shù)取值
    $\gamma $0.5
    $\alpha $0.1
    $\eta $0.001
    ${T_{\text{h}}}$0.3
    ${w_1}$1
    ${w_2}$0.5
    ${w_3}$0.5
    ${w_4}$1
    下載: 導(dǎo)出CSV

    表  2  干擾機不同動作獎勵值

    通信目標(biāo)干擾機 增大功率 切換信道
    增大功率 r1 r2
    切換信道 r3 r4
    下載: 導(dǎo)出CSV

    表  3  前2個最大Q值對應(yīng)不同策略選擇個數(shù)情況

    序號 干擾
    狀態(tài)
    增大
    功率
    切換
    信道
    序號 干擾
    狀態(tài)
    增大
    功率
    切換
    信道
    1 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 1 11 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 1 1
    2 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 1 12 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 2 0
    3 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 1 1 13 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 1
    4 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 2 0 14 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 1
    5 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 0 2 15 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 1 1
    6 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 0 2 16 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 2 0
    7 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 1 1 17 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 1
    8 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 2 0 18 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 1
    9 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 0 2 19 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 1 1
    10 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 1 20 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 1 1
    總次數(shù) 21 19
    下載: 導(dǎo)出CSV

    表  4  不同策略選擇概率情況

    序號 干擾
    狀態(tài)
    增大
    功率
    切換
    信道
    序號 干擾
    狀態(tài)
    增大
    功率
    切換
    信道
    1 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 0 11 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 0.76 0.24
    2 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 0 12 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 1 0
    3 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 0.89 0.11 13 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 0
    4 $ \left( {{f_{{\text{j}},t}} = {F_1},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_1},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 0.77 0.23 14 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 0
    5 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 0 15 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 0.93 0.07
    6 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 0 16 $ \left( {{f_{{\text{j}},t}} = {F_4},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_4},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 1 0
    7 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 0.98 0.02 17 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 0
    8 $ \left( {{f_{{\text{j}},t}} = {F_2},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_2},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 0.80 0.20 18 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 0
    9 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 2{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 7{\text{ }}{\rm{mW}}} \right) $ 1 0 19 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 6{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 21{\text{ }}{\rm{mW}}} \right) $ 0.87 0.13
    10 $ \left( {{f_{{\text{j}},t}} = {F_3},{p_{{\text{j}},t}} = 4{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_3},{p_{{\text{c}},t}} = 14{\text{ }}{\rm{mW}}} \right) $ 1 0 20 $ \left( {{f_{{\text{j}},t}} = {F_5},{p_{{\text{j}},t}} = 8{\text{ }}{\rm{mW}},{f_{{\text{c}},t}} = {F_5},{p_{{\text{c}},t}} = 28{\text{ }}{\rm{mW}}} \right) $ 0.76 0.24
    平均概率 0.94 0.06
    注:表中有部分結(jié)果為0,實際上其值為小于${10^{ - 3}}$的值,對結(jié)果的影響極小。為了表述方便,本文將其忽略。
    下載: 導(dǎo)出CSV

    表  5  各算法耗時(ms)

    算法仿真實驗1仿真實驗2仿真實驗3
    IPHC算法12.011.110.8
    PHC算法14.513.814.0
    Q-learning算法7.45.44.8
    下載: 導(dǎo)出CSV
  • [1] HAN Hao, XU Yifan, JIN Zhu, et al. Primary-User-Friendly Dynamic Spectrum Anti-Jamming Access: A GAN-Enhanced Deep Reinforcement Learning Approach[J]. IEEE Wireless Communications Letters, 2022, 11(2): 258–262. doi: 10.1109/LWC.2021.3125337.
    [2] NI Gang, HE Chong, JIN Ronghong. Single-Channel Anti-Jamming Receiver With Harmonic-Based Space-Time Adaptive Processing[J]. IEEE Wireless Communications Letters, 2022, 11(4): 776–780. doi: 10.1109/LWC.2022.3143505.
    [3] ZHU Xinyu, HUANG Yang, WANG Shaoyu, et al. Dynamic Spectrum Anti-Jamming With Reinforcement Learning Based on Value Function Approximation[J]. IEEE Wireless Communications Letters, 2023, 12(2): 386–390. doi: 10.1109/LWC.2022.3228045.
    [4] 汪志勇, 張滬寅, 徐寧, 等. 認(rèn)知無線電網(wǎng)絡(luò)中基于隨機學(xué)習(xí)博弈的信道分配與功率控制[J]. 電子學(xué)報, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.

    WANG Zhiyong, ZHANG Huyin, XU Ning, et al. Channel assignment and power control based on stochastic learning game in cognitive radio networks[J]. Acta electronica sinica, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.
    [5] 饒寧, 許華, 蔣磊, 等. 基于多智能體深度強化學(xué)習(xí)的分布式協(xié)同干擾功率分配算法[J]. 電子學(xué)報, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.

    RAO Ning, XU Hua, JIANG Lei, et al. Allocation algorithm of distributed cooperative jamming power based on multi-agent deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.
    [6] 宋佰霖, 許華, 齊子森, 等. 一種基于深度強化學(xué)習(xí)的協(xié)同通信干擾決策算法[J]. 電子學(xué)報, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.

    SONG Bailin, XU Hua, QI Ziseng, et al. A collaborative communication jamming decision algorithm based on deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.
    [7] AMURU S, TEKIN C, SCHAAR M V D, et al. Jamming Bandits—A Novel Learning Method for Optimal Jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2792–2808. doi: 10.1109/TWC.2015.2510643.
    [8] ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. A novel jamming strategy-greedy bandit[C]. Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). Guangzhou, China: IEEE, 2017: 1142-1146. doi: 10.1109/ICCSN.2017.8230289.
    [9] 張君毅, 張冠杰, 楊鴻杰. 針對未知通信目標(biāo)的干擾策略智能生成方法研究[J]. 電子測量技術(shù), 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.

    ZHANG Junyi, ZHANG Guanjie, YANG Hongjie. Research on intelligent interference strategy generation method for unknown communication target[J]. Electronic measurement technology, 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.
    [10] ZHUANSUN Shaoshuai, YANG Junan, LIU Hui. An algorithm for jamming strategy using OMP and MAB[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 85–95. doi: 10.1186/s13638-019-1414-4.
    [11] 顓孫少帥, 楊俊安, 劉輝, 等. 采用雙層強化學(xué)習(xí)的干擾決策算法[J]. 西安交通大學(xué)學(xué)報, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.

    ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. An algorithm for jamming decision using dual reinforcement learning[J]. Journal of Xi’an jiaotong university, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.
    [12] ZHOU Cheng, MA Congshan, LIN Qian, et al. Intelligent bandit learning for jamming strategy generation[J]. Wireless Networks, 2023, 29(5): 2391–2403. doi: 10.1007/s11276-023-03286-9.
    [13] 李芳, 熊俊, 趙肖迪, 等. 基于快速強化學(xué)習(xí)的無線通信干擾規(guī)避策略[J]. 電子與信息學(xué)報, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.

    LI Fang, XIONG Jun, ZHAO Xiaodi, et al. Wireless communications interference avoidance based on fast reinforcement learning[J]. Journal of electronics and information technology, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.
    [14] 潘筱茜, 張姣, 劉琰, 等. 基于深度強化學(xué)習(xí)的多域聯(lián)合干擾規(guī)避[J]. 信號處理, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.

    PAN Xiaoqian, ZHANG Jiao, LIU Yan, et al. Multi-domain joint interference avoidance based on deep reinforcement learning[J]. Journal of signal processing, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.
    [15] TOM V. 9 Reinforcement Learning: The Markov Decision Process Approach[M]. MIT Press. 2021: 133-152.
    [16] 楊鴻杰, 張君毅. 基于強化學(xué)習(xí)的智能干擾算法研究[J]. 電子測量技術(shù), 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.

    YANG Hongjie, ZHANG Junyi. Research on intelligent interference algorithm based on reinforcement learning[J]. Electronic measurement technology, 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.
    [17] MARTIN A, ANDERS H. Reinforcement Learning[M]. Wiley. 2023: 327-349.
    [18] 裴緒芳, 陳學(xué)強, 呂麗剛, 等. 基于隨機森林強化學(xué)習(xí)的干擾智能決策方法研究[J]. 通信技術(shù), 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.

    PEI Xufang, CHEN Xueqiang, LV Ligang, et al. Research on jamming intelligent decision-making method based on random forest reinforcement learning[J]. Communications technology, 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.
    [19] 張雙義, 沈箬怡, 陳學(xué)強, 等. 基于強化學(xué)習(xí)的功率與信道聯(lián)合干擾方法研究[J]. 通信技術(shù), 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.

    ZHANG Shuangyi, SHEN Ruoyi, CHEN Xueqiang, et al. Joint jamming method of channel and power based on reinforcement learning[J]. Communications technology, 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.
    [20] BOWLING M, VELOSO M M. Rational and Convergent Learning in Stochastic Games[C]. Proceedings of the International Joint Conference on Artificial Intelligence. Seattle, WA, 2001: 1021-1026.
    [21] XU B, ZENG W. A Combat Decision Support Method Based on OODA and Dynamic Graph Reinforcement Learning[C]. Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE , 2022: 4872-4878. doi: 10.1109/CCDC55256.2022.10033986.
  • 加載中
圖(5) / 表(6)
計量
  • 文章訪問數(shù):  195
  • HTML全文瀏覽量:  60
  • PDF下載量:  51
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-10-01
  • 網(wǎng)絡(luò)出版日期:  2024-10-09
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回