輸入串聯(lián)輸出串聯(lián)型模塊化高壓電源功率變換拓?fù)涓倪M(jìn)設(shè)計(jì)
doi: 10.11999/JEIT240090
-
1.
中國(guó)科學(xué)院空天信息創(chuàng)新研究院 北京 100190
-
2.
中國(guó)科學(xué)院大學(xué) 北京 100039
Improved Topology of Modular High-voltage Power Converter with Input Series Output Series Configuration
-
1.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
-
2.
University of Chinese Academy of Sciences, Beijing 100039, China
-
摘要: 模塊化高壓電源具有高效率、高可靠性、可重構(gòu)性等特點(diǎn)在大功率高壓器件中得到廣泛應(yīng)用。其中基于串并聯(lián)諧振變換器的輸入串聯(lián)輸出串聯(lián)型功率變換拓?fù)溥m用于高頻高壓工作環(huán)境,具有減少功率損耗,繞組介質(zhì)損耗,利用多級(jí)變壓器寄生參數(shù)等優(yōu)勢(shì),有廣泛的應(yīng)用前景。目前關(guān)于該拓?fù)涞难芯恐饕杏诶碚摲治龊托蕛?yōu)化,在實(shí)際高壓環(huán)境應(yīng)用中多級(jí)變壓器繞組間存在的高壓隔離問題還未得到有效解決,該文提出多級(jí)變壓器共用原邊繞組的設(shè)計(jì),簡(jiǎn)化傳統(tǒng)變壓器單級(jí)繞制方式所存在的高壓隔離問題。然而該繞制方案會(huì)造成多級(jí)變壓器不均壓和電壓發(fā)散現(xiàn)象,因此該文同時(shí)基于利用變壓器和倍壓整流電路中二極管的寄生參數(shù),提出改進(jìn)的拓?fù)湓O(shè)計(jì),有效解決了分壓不均問題,進(jìn)行了仿真驗(yàn)證與試驗(yàn)驗(yàn)證。仿真結(jié)果與實(shí)驗(yàn)結(jié)果均證明了所提共用原邊繞組的高壓隔離結(jié)構(gòu)和改進(jìn)拓?fù)涞挠行浴?/div>
-
關(guān)鍵詞:
- 模塊化高壓電源 /
- 高壓隔離 /
- 串并聯(lián)諧振變換器
Abstract: The modular high-voltage power supply, characterized by high efficiency, reliability, and reconfigurability, has found widespread application in high-power high-voltage devices. Among them, the input series output series topology based on the series-parallel resonant converter is suitable for high-frequency high-voltage operating environments, offering advantages such as reduced power losses, winding dielectric losses, and utilizing parasitic parameters of multi-stage transformer. It has broad prospects for application. Current research on this topology primarily focuses on theoretical analysis and efficiency optimization. In practical high-voltage environments, the high-voltage isolation issues between windings of multi-stage transformers have not been effectively addressed. In this paper, a design of shared primary windings for multi-stage transformers is proposed to simplify the high-voltage isolation issues inherent in traditional transformer single-stage winding methods. However, this winding scheme can lead to non-uniform voltage distribution and voltage divergence in multi-stage transformers. Therefore, based on utilizing the parasitic parameters of diodes in transformers and voltage doubling rectifier circuits, an improved topology design is proposed to effectively address the uneven voltage distribution issue. Simulation and experimental validations were conducted, and the results from both simulations and experiments confirm the effectiveness of the proposed high-voltage isolation structure with shared primary windings and the improved topology.表 1 不同級(jí)聯(lián)方式應(yīng)用場(chǎng)景
級(jí)聯(lián)方式 輸入串聯(lián)輸出串聯(lián) 輸入串聯(lián)輸出并聯(lián) 輸入并聯(lián)輸出串聯(lián) 輸入并聯(lián)輸出并聯(lián) 適用場(chǎng)合 高輸入、輸出電壓 高輸入電壓高輸出電流 高輸入電流高輸出電壓 高輸入、輸出電流 下載: 導(dǎo)出CSV
表 2 諧振變換器分類及應(yīng)用場(chǎng)景
特點(diǎn) LC串聯(lián) LC并聯(lián) LCC串并聯(lián) LLC串并聯(lián) CLL串并聯(lián) 電壓增益 0.5~1.0 1.0~10.0 0.5~3.0 1.0~2.5 1.0~2.5 傳輸效率(%) 90 90 96 97 96 適用場(chǎng)合 中壓大功率 中壓大電流 高壓大功率 中壓高效率 中壓高頻率 下載: 導(dǎo)出CSV
表 3 電氣性能參數(shù)和諧振元件參數(shù)
參數(shù)名稱 描述 參數(shù)值 Vin 輸入電壓 70 V Vo 輸出電壓 7100 VC1, C2,···, C6n 倍壓整流電路電容 47 nF Ro 負(fù)載電阻 100 kΩ Lr 串聯(lián)諧振電感 12.5 μH Cr 串聯(lián)諧振電容 10 nF fs 開關(guān)頻率 500 kHz 下載: 導(dǎo)出CSV
[1] ZHUGE Yingjian, LIANG Junrui, FU Minfan, et al. Comprehensive overview of power electronics intensive solutions for high-voltage pulse generators[J]. IEEE Open Journal of Power Electronics, 2024, 5: 1–20. doi: 10.1109/OJPEL.2023.3340220. [2] FENG Hongyu, LIN Hongyi, XU Jiasheng, et al. A phase-shifting control IPOS high-voltage generator with low output voltage ripple for X-ray[C]. The 11th International Conference on Power Electronics and ECCE Asia, Jeju Island, Korea, Republic of, 2023: 235–240. doi: 10.23919/ICPE2023-ECCEAsia54778.2023.10213709. [3] CHOUDHARY S N and ELANGOVAN D. High gain, naturally clamped Dc to Dc converter for X-ray application[C]. 2016 International Conference on Computation of Power, Energy Information and Commuincation, Melmaruvathur, India, 2016: 587–592. doi: 10.1109/ICCPEIC.2016.7557298. [4] 王澤庭, 楊旭. 大功率高壓LCC諧振電源重要參數(shù)研究與設(shè)計(jì)[J]. 電氣傳動(dòng), 2018, 48(2): 53–57. doi: 10.19457/j.1001-2095.20180210.WANG Zeting and YANG Xu. Design and research of important parameters for high power high voltage LCC resonant power supply[J]. Electric Drive, 2018, 48(2): 53–57. doi: 10.19457/j.1001-2095.20180210. [5] MARTIN-RAMOS J A, DIAZ J, PERNIA A M, et al. Dynamic and steady-state models for the PRC-LCC resonant topology with a capacitor as output filter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 2262–2275. doi: 10.1109/TIE.2007.894763. [6] MAO Saijun, POPOVIC J, FERREIRA J A, et al. Equivalent circuit model for modular high voltage power generation architectures[C]. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 3098–3102. doi: 10.1109/ECCE.2017.8096565. [7] 伍梁. 高壓直流LCC諧振變換器狀態(tài)軌跡控制策略及其模塊化級(jí)聯(lián)技術(shù)[D]. [博士論文], 浙江大學(xué), 2020. doi: 10.27461/d.cnki.gzjdx.2020.000695.WU Liang. State trajectory control strategy and modular cascade technology of high voltage LCC resonant converter[D]. [Ph. D. dissertation], Zhejiang University, 2020. doi: 10.27461/d.cnki.gzjdx.2020.000695. [8] CHEN Wu and RUAN Xinbo. Modularization structure for series-parallel connected converters[C]. The 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, USA, 2008. doi: 10.1109/APEC.2008.4522928. [9] 曲璐. 輸入串聯(lián)型組合變換器控制策略關(guān)鍵技術(shù)研究[D]. [博士論文], 哈爾濱工業(yè)大學(xué), 2018.QU Lu. Study on key technologies of input series combination converters control strategy[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2018. [10] KROICS K, ZAKIS J, SUZDALENKO A, et al. A simplified approach to input voltage balancing for series connected isolated DC-DC converters[C]. The 18th European Conference on Power Electronics and Applications, Karlsruhe, Germany, 2016. doi: 10.1109/EPE.2016.7695415. [11] YU Mengyuan, SHA Deshang, and LIAO Xiaozhong. Hybrid phase shifted full bridge and LLC half bridge DC–DC converter for low-voltage and high-current output applications[J]. IET Power Electronics, 2014, 7(7): 1832–1840. doi: 10.1049/iet-pel.2013.0778. [12] 張翔, 鄭晟, 張軍明. 一種高壓寬范圍輸入輔助電源的設(shè)計(jì)[J]. 電力電子技術(shù), 2011, 45(7): 127–129. doi: 10.3969/j.issn.1000-100X.2011.07.046.ZHANG Xiang, ZHENG Sheng, and ZHANG Junming. The design of auxiliary power supply with wide range and high input voltage[J]. Power Electronics, 2011, 45(7): 127–129. doi: 10.3969/j.issn.1000-100X.2011.07.046. [13] ZHENG Jiaqiang, LU Shujing, and LI Jiaqi. LLC and LCC analysis and comparison of resonant converters[C]. The 35th Youth Academic Annual Conference of Chinese Association of Automation, Zhanjiang, China, 2020: 226–231. doi: 10.1109/YAC51587.2020.9337641. [14] 夏冰, 阮新波, 陳武. 高壓大功率場(chǎng)合LCC諧振變換器的分析與設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2009, 24(5): 60–66. doi: 10.19595/j.cnki.1000-6753.tces.2009.05.011.XIA Bing, RUAN Xinbo, and CHEN Wu. Analysis and design of LCC resonant converter for high voltage and high power applications[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 60–66. doi: 10.19595/j.cnki.1000-6753.tces.2009.05.011. [15] 李康康. 模塊化高壓直流諧振電源的研究[D]. [碩士論文], 華中科技大學(xué), 2017.LI Kangkang. The research of modular high voltage DC power supply based on resonant and soft-switching converter[D]. [Master dissertation], Huazhong University of Science and Technology, 2017. [16] 楊曉光, 高正, 席利根, 等. 輸入并聯(lián)輸出串聯(lián)LCC變換器的設(shè)計(jì)[J]. 電氣傳動(dòng), 2021, 51(4): 47–51. doi: 10.19457/j.1001-2095.dqcd20574.YANG Xiaoguang, GAO Zheng, XI Ligen, et al. Design of an input-parallel output-series LCC converter[J]. Electric Drive, 2021, 51(4): 47–51. doi: 10.19457/j.1001-2095.dqcd20574. [17] MAO Saijun, POPOVIC J, FERREIRA J A, et al. Comparative analysis and evaluation of high voltage power generation architectures[C]. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 4753–4760. doi: 10.1109/ECCE.2017.8096809. [18] MAO Saijun, LI Chengmin, LI Wuhua, et al. Unified equivalent steady-state circuit model and comprehensive design of the LCC resonant converter for HV generation architectures[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7531–7544. doi: 10.1109/TPEL.2017.2774147. [19] SON S H, KWON C H, KIM T H, et al. Development of 120 kV and 60 kW three phase LCC resonant converter for electron beam welding system[J]. IEEE Transactions on Plasma Science, 2023, 51(10): 2813–2822. doi: 10.1109/TPS.2023.3288116. [20] LIN Chudi, HE Liqun, LI Xiaohui, et al. Modeling and digital control of 100kV/50kW high voltage power supply based on PPSS-LCC for X-ray generator[C]. The IEEE 4th International Electrical and Energy Conference, Wuhan, China, 2021: 1–6. doi: 10.1109/CIEEC50170.2021.9510975. [21] 李自成, 袁保山. 改進(jìn)型低紋波Cockcroft-Walton倍壓電路及其特性研究[J]. 科學(xué)技術(shù)與工程, 2014, 14(17): 64–67,77. doi: 10.3969/j.issn.1671-1815.2014.17.012.LI Zicheng and YUAN Baoshan. Advanced low ripple Cockcroft-Walton voltage multiplier circuit and its characteristics research[J]. Science Technology and Engineering, 2014, 14(17): 64–67,77. doi: 10.3969/j.issn.1671-1815.2014.17.012.