一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

智能反射面輔助通感一體化系統(tǒng)安全資源分配算法

朱政宇 楊晨一 李錚 郝萬明 楊婧 孫鋼燦

朱政宇, 楊晨一, 李錚, 郝萬明, 楊婧, 孫鋼燦. 智能反射面輔助通感一體化系統(tǒng)安全資源分配算法[J]. 電子與信息學(xué)報, 2025, 47(1): 66-74. doi: 10.11999/JEIT240083
引用本文: 朱政宇, 楊晨一, 李錚, 郝萬明, 楊婧, 孫鋼燦. 智能反射面輔助通感一體化系統(tǒng)安全資源分配算法[J]. 電子與信息學(xué)報, 2025, 47(1): 66-74. doi: 10.11999/JEIT240083
ZHU Zhengyu, YANG Chenyi, LI Zheng, HAO Wanming, YANG Jing, SUN Gangcan. Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Secure Integrated Sensing And Communications System[J]. Journal of Electronics & Information Technology, 2025, 47(1): 66-74. doi: 10.11999/JEIT240083
Citation: ZHU Zhengyu, YANG Chenyi, LI Zheng, HAO Wanming, YANG Jing, SUN Gangcan. Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Secure Integrated Sensing And Communications System[J]. Journal of Electronics & Information Technology, 2025, 47(1): 66-74. doi: 10.11999/JEIT240083

智能反射面輔助通感一體化系統(tǒng)安全資源分配算法

doi: 10.11999/JEIT240083
基金項目: 國家重點研發(fā)計劃(2022YFD2001200),國家自然科學(xué)基金(61922072),中國博士后科學(xué)基金(2023T160596),河南省自然科學(xué)基金優(yōu)青項目(232300421097),河南省高??萍紕?chuàng)新人才支持計劃(23HASTIT019),河南省博士后經(jīng)費資助(202001015),東南大學(xué)移動通信國家重點實驗室開放課題(2023D11)
詳細信息
    作者簡介:

    朱政宇:男,副教授,研究方向為無線通信和信號處理、5G/6G、智能反射面輔助通信等

    楊晨一:女,碩士生,研究方向為智能反射面輔助、通感一體化

    李錚:男,博士生,研究方向為無線通信和信號處理

    郝萬明:男,副教授,研究方向為毫米波/太赫茲智能超表面、通感一體化

    楊婧:女,講師,研究方向為通信感知一體化

    孫鋼燦:男,教授,研究方向為通信信號處理、通信信號關(guān)鍵參數(shù)盲估計等

    通訊作者:

    孫鋼燦 iegcsun@zzu.edu.cn

  • 中圖分類號: TN915.0

Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Secure Integrated Sensing And Communications System

Funds: The National Key R&D Program of China (2022YFD2001200), The National Natural Science Foundation of China (61922072), China Postdoctoral Science Foundation (2023T160596), The Natural Science Foundation of Henan Province (232300421097), The Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT019), Henan Postdoctoral Foundation (202001015), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2023D11)
  • 摘要: 為了解決6G通感一體化系統(tǒng)(ISAC)中信息傳輸安全以及頻譜緊張的問題,該文提出一種智能反射面(IRS)輔助ISAC系統(tǒng)安全資源分配算法。首先,在IRS-ISAC系統(tǒng)中,用戶受到竊聽者的惡意攻擊時,通過干擾機發(fā)射的干擾信號和IRS智能地調(diào)節(jié)反射相移,重新配置傳輸環(huán)境,以提高系統(tǒng)的物理層安全。其次,考慮在基站和干擾機的最大發(fā)射功率約束,IRS反射相移約束以及雷達的信干噪比約束下,建立一個聯(lián)合優(yōu)化基站發(fā)射波束成形、干擾機預(yù)編碼和IRS相移的系統(tǒng)保密率最大化優(yōu)化問題。然后,利用交替優(yōu)化和半正定松弛(SDR)算法等方法對原非凸優(yōu)化問題進行轉(zhuǎn)換,求出一個能夠得到確定解的凸優(yōu)化問題。最后提出一種基于交替迭代的安全資源分配算法。仿真結(jié)果驗證了所提算法的安全性和有效性以及IRS-ISAC系統(tǒng)的優(yōu)越性。
  • 圖  1  系統(tǒng)模型

    圖  2  保密率隨迭代次數(shù)變化曲線

    圖  3  系統(tǒng)保密率與基站最大發(fā)射功率的關(guān)系

    圖  4  系統(tǒng)保密率與IRS的反射元素數(shù)量的關(guān)系

    圖  5  雷達SINR與基站發(fā)射功率的關(guān)系

    1  求解式(10)的交替優(yōu)化算法

     輸入:$ {P_{\text{B}}} $, $ {P_{\text{J}}} $, ${\varGamma _{\text{t}}}$, $ {{\boldsymbol{H}}_{{\text{I, }}m}} $, $ {{\boldsymbol{G}}_{{\text{I, }}m}} $, ${{\boldsymbol{h}}}_{{\text{B, }}m}^{H} $, ${{\boldsymbol{g}}}_{{\text{J, }}m}^{H} $, $\varepsilon $, $L$
     輸出:$ {{\boldsymbol{w}}} $, $ {{\boldsymbol{v}}} $, $ {{\boldsymbol{\theta}} } $
     (1) 初始化$ {{{\boldsymbol{w}}}^{(0)}} $, $ {{{\boldsymbol{v}}}^{(0)}} $和$ {{{\boldsymbol{\theta}} }^{(0)}} $;
     (2) 設(shè)置迭代次數(shù)$ r = 1 $, $ {{\boldsymbol{W}}^{(0)}} = {{\boldsymbol{w}}}{{{\boldsymbol{w}}}^{{\mathrm{H}}} } $, $ {{\boldsymbol{F}}^{(0)}} = {{\boldsymbol{v}}}{{{\boldsymbol{v}}}^{{\mathrm{H}}} } $;
     (3) 重復(fù)
     (4)  在給定$ {{{\boldsymbol{\theta}} }^{(r - 1)}} $, $ {{\boldsymbol{W}}^{(r - 1)}} $和$ {{\boldsymbol{F}}^{(r - 1)}} $時,求解式(11);根據(jù)
        式(18)和式(19)分別找到最優(yōu)的$ {t}_{\text{s}}^{(r)} $和$ t_{{\text{e, }}k}^{(r)} $;
     (5)  在給定$ {t}_{\text{s}}^{(r)} $和$ t_{{\text{e, }}k}^{(r)} $時,通過求解式(20),找到最優(yōu)的$ {{\boldsymbol{W}}}^{(r)} $
        和$ {{\boldsymbol{F}}^{(r)}} $,通過特征值分解得出$ {{{\boldsymbol{w}}}^{(r)}} $和$ {{{\boldsymbol{v}}}^{(r)}} $;
     (6)  在給定$ {{{\boldsymbol{w}}}^{(r)}} $和$ {{{\boldsymbol{v}}}^{(r)}} $時,方法同上,通過求解式(21),找到
        最優(yōu)的$ {{{\boldsymbol{\theta }}}^{(r)}} $;
     (7) 更新$r{\text{ = }}r{\text{ + 1}} $
     (8) 直到問題式(10)的目標中的目標值下降$ \le \varepsilon $或者$r = L$。
    下載: 導(dǎo)出CSV
  • [1] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270.
    [2] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [3] LI Xingwang, GAO Xuesong, LIU Yingting, et al. Overlay CR-NOMA assisted intelligent transportation system networks with imperfect SIC and CEEs[J]. Chinese Journal of Electronics, 2023, 32(6): 1258–1270. doi: 10.23919/cje.2022.00.071.
    [4] HONG Haohui, ZHAO Jingcheng, HONG Tao, et al. Radar–communication integration for 6G massive IoT services[J]. IEEE Internet of Things Journal, 2022, 9(16): 14511–14520. doi: 10.1109/JIOT.2021.3064072.
    [5] CUI Zhichao, HU Jing, CHENG Jian, et al. Multi-domain NOMA for ISAC: Utilizing the DOF in the delay-Doppler domain[J]. IEEE Communications Letters, 2023, 27(2): 726–730. doi: 10.1109/LCOMM.2022.3228873.
    [6] ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. Holographic integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2114–2130. doi: 10.1109/JSAC.2022.3155548.
    [7] XU Jinlei, ZHU Zhengyu, CHU Zheng, et al. Sum secrecy rate maximization for IRS-aided multi-cluster MIMO-NOMA terahertz systems[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4463–4474. doi: 10.1109/TIFS.2023.3293957.
    [8] PEI Yingjie, YUE Xinwei, YI Wenqiang, et al. Secrecy outage probability analysis for downlink RIS-NOMA networks with on-off control[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11772–11786. doi: 10.1109/TVT.2023.3267531.
    [9] LIN Zhi, LIN Min, CHAMPAGNE B, et al. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks[J]. IEEE Transactions on Communications, 2021, 69(9): 6345–6360. doi: 10.1109/TCOMM.2021.3088898.
    [10] LIU Peng, FEI Zesong, WANG Xinyi, et al. Outage constrained robust secure beamforming in integrated sensing and communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2260–2264. doi: 10.1109/LWC.2022.3198683.
    [11] SU Nanchi, LIU Fan, WEI Zhongxiang, et al. Secure dual-functional radar-communication transmission: Exploiting interference for resilience against target eavesdropping[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7238–7252. doi: 10.1109/TWC.2022.3156893.
    [12] XU Dongfang, YU Xianghao, NG D W K, et al. Robust and secure resource allocation for ISAC systems: A novel optimization framework for variable-length snapshots[J]. IEEE Transactions on Communications, 2022, 70(12): 8196–8214. doi: 10.1109/TCOMM.2022.3218629.
    [13] SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164.
    [14] CHU Jinjin, LIU Rang, LI Ming, et al. Joint secure transmit beamforming designs for integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4778–4791. doi: 10.1109/TVT.2022.3225952.
    [15] 李興旺, 田志發(fā), 張建華, 等. IRS輔助NOMA網(wǎng)絡(luò)下隱蔽通信性能研究[J]. 中國科學(xué): 信息科學(xué), 2023. doi: 10.1360/SSI-20230174.

    LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2023. doi: 10.1360/SSI-20230174.
    [16] ZHOU Chunyu, XU Yongjun, LI Dong, et al. Energy-efficient maximization for RIS-aided MISO symbiotic radio systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13689–13694. doi: 10.1109/TVT.2023.3274796.
    [17] YAN Wencai, HAO Wanming, HUANG Chongwen, et al. Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2306–2320. doi: 10.1109/JSAC.2023.3288235.
    [18] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
    [19] LIU Huiling, LI Geng, LI Xingwang, et al. Effective capacity analysis of STAR-RIS-assisted NOMA networks[J]. IEEE Wireless Communications Letters, 2022, 11(9): 1930–1934. doi: 10.1109/LWC.2022.3188443.
    [20] ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Resource allocation for IRS assisted mmWave integrated sensing and communication systems[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Republic of, 2022: 2333–2338. doi: 10.1109/ICC45855.2022.9838546.
    [21] HUA Meng, WU Qingqing, CHEN Wen, et al. Secure intelligent reflecting surface-aided integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 575–591. doi: 10.1109/TWC.2023.3280179.
    [22] ZHANG Huiying and ZHENG Jianping. IRS-assisted secure radar communication systems with malicious target[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 591–604. doi: 10.1109/TVT.2023.3302429.
    [23] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629.
    [24] LI Qiang, HONG Mingyi, WAI H T, et al. Transmit solutions for MIMO wiretap channels using alternating optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1714–1727. doi: 10.1109/JSAC.2013.130906.
    [25] LE Xinyi and WANG Jun. A two-time-scale neurodynamic approach to constrained minimax optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 620–629. doi: 10.1109/TNNLS.2016.2538288.
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  691
  • HTML全文瀏覽量:  271
  • PDF下載量:  128
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-02-04
  • 修回日期:  2024-05-04
  • 網(wǎng)絡(luò)出版日期:  2024-05-17
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回