一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

信息年齡約束下的無(wú)人機(jī)數(shù)據(jù)采集能耗優(yōu)化路徑規(guī)劃算法

高思華 劉寶煜 惠康華 徐偉峰 李軍輝 趙炳陽(yáng)

高思華, 劉寶煜, 惠康華, 徐偉峰, 李軍輝, 趙炳陽(yáng). 信息年齡約束下的無(wú)人機(jī)數(shù)據(jù)采集能耗優(yōu)化路徑規(guī)劃算法[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075
引用本文: 高思華, 劉寶煜, 惠康華, 徐偉峰, 李軍輝, 趙炳陽(yáng). 信息年齡約束下的無(wú)人機(jī)數(shù)據(jù)采集能耗優(yōu)化路徑規(guī)劃算法[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075
GAO Sihua, LIU Baoyu, HUI Kanghua, XU Weifeng, LI Junhui, ZHAO Bingyang. Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075
Citation: GAO Sihua, LIU Baoyu, HUI Kanghua, XU Weifeng, LI Junhui, ZHAO Bingyang. Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075

信息年齡約束下的無(wú)人機(jī)數(shù)據(jù)采集能耗優(yōu)化路徑規(guī)劃算法

doi: 10.11999/JEIT240075
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62173332),中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(3122019118),河北省能源電力知識(shí)計(jì)算重點(diǎn)實(shí)驗(yàn)室開(kāi)發(fā)基金(HBKCEP202202)
詳細(xì)信息
    作者簡(jiǎn)介:

    高思華:男,講師,研究方向?yàn)閺?qiáng)化學(xué)習(xí)理論、最優(yōu)化理論、無(wú)線傳感器網(wǎng)絡(luò)和無(wú)人機(jī)系統(tǒng)

    劉寶煜:男,碩士生,研究方向?yàn)閺?qiáng)化學(xué)習(xí)理論、無(wú)人機(jī)路徑規(guī)劃

    惠康華:男,副教授,研究方向?yàn)橛?jì)算機(jī)視覺(jué)

    徐偉峰:男,講師,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和空管系統(tǒng)

    李軍輝:男,碩士生,研究方向?yàn)閺?qiáng)化學(xué)習(xí)理論、無(wú)人機(jī)路徑規(guī)劃

    趙炳陽(yáng):男,碩士生,研究方向?yàn)閺?qiáng)化學(xué)習(xí)理論、無(wú)人機(jī)路徑規(guī)劃

    通訊作者:

    惠康華 khhui@cauc.edu.cn

  • 中圖分類(lèi)號(hào): TN926.2; V279

Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection

Funds: The National Natural Science Foundation of China (62173332), The Fundamental Research Fundation for the Central Universities (3122019118), The Open Fundation of Hebei Key Laboratory of Knowledge Computing for Energy & Power (HBKCEP202202)
  • 摘要: 信息年齡(AoI)是評(píng)價(jià)無(wú)線傳感器網(wǎng)絡(luò)(WSN)數(shù)據(jù)時(shí)效性的重要指標(biāo),無(wú)人機(jī)輔助WSN數(shù)據(jù)采集過(guò)程中采用優(yōu)化飛行軌跡、提升速度等運(yùn)動(dòng)策略保障卸載至基站的數(shù)據(jù)滿足各節(jié)點(diǎn)AoI限制。然而,不合理的運(yùn)動(dòng)策略易導(dǎo)致無(wú)人機(jī)因飛行距離過(guò)長(zhǎng)、速度過(guò)快產(chǎn)生非必要能耗,造成數(shù)據(jù)采集任務(wù)失敗。針對(duì)該問(wèn)題,該文首先提出信息年齡約束的無(wú)人機(jī)數(shù)據(jù)采集能耗優(yōu)化路徑規(guī)劃問(wèn)題并進(jìn)行數(shù)學(xué)建模;其次,設(shè)計(jì)一種協(xié)同混合近端策略優(yōu)化(CH-PPO)強(qiáng)化學(xué)習(xí)算法,同時(shí)規(guī)劃無(wú)人機(jī)對(duì)傳感器節(jié)點(diǎn)或基站的訪問(wèn)次序、懸停位置和飛行速度,在滿足各傳感器節(jié)點(diǎn)信息年齡約束的同時(shí),最大限度地減少無(wú)人機(jī)能量消耗。再次,設(shè)計(jì)一種融合離散和連續(xù)策略的損失函數(shù),增強(qiáng)CH-PPO算法動(dòng)作的合理性,提升其訓(xùn)練效果。仿真實(shí)驗(yàn)結(jié)果顯示,CH-PPO算法在無(wú)人機(jī)能量消耗以及影響該指標(biāo)因素的比較中均優(yōu)于對(duì)比的3種強(qiáng)化學(xué)習(xí)算法,并具有良好的收斂性、穩(wěn)定性和魯棒性。
  • 圖  1  任務(wù)示意圖

    圖  2  AoI示意圖

    圖  3  網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  4  獎(jiǎng)勵(lì)收斂效果圖

    圖  5  不同學(xué)習(xí)率下的獎(jiǎng)勵(lì)收斂圖

    圖  6  不同裁剪系數(shù)下的獎(jiǎng)勵(lì)收斂圖

    1  CH-PPO算法

     (1)輸入:訓(xùn)練輪數(shù)${\text{EP}}$,參數(shù)更新次數(shù)$M$,學(xué)習(xí)率$\eta $,裁剪系數(shù)$ \varepsilon $;
     (2)初始化網(wǎng)絡(luò)參數(shù):$\theta $,$ {\theta _{{\text{old}}}} $和$\omega $;
     (3)循環(huán)訓(xùn)練:$i = 1,2, \cdots ,{\text{EP}}$:
     (4) ${\text{done}} \ne 0$時(shí):
     (5)  計(jì)算離散動(dòng)作${\chi _{\mathrmq7j3ldu95}}\left( {{{\boldsymbol{s}}_k};{\theta _{{\mathrmq7j3ldu95},{\mathrm{old}}}}} \right)$;
     (6)  計(jì)算連續(xù)動(dòng)作${\chi _{\mathrm{c}}}\left( {{{\boldsymbol{s}}_k};{\theta _{{\mathrm{c}},{\mathrm{old}}}}} \right)$;
     (7)  得到混合動(dòng)作${{\boldsymbol{a}}_k} = \left\{ {i,\left( {l\left( k \right),\theta \left( k \right),{\boldsymbol{v}}\left( k \right)} \right)} \right\}$;
     (8)  智能體在狀態(tài)${{\boldsymbol{s}}_k}$下執(zhí)行動(dòng)作${{\boldsymbol{a}}_k}$,獲得獎(jiǎng)勵(lì)${r_k}$,并進(jìn)入下
        一狀態(tài)${{\boldsymbol{s}}_{k + 1}}$;
     (9)  將$\left( {{{\boldsymbol{s}}_k},{{\boldsymbol{a}}_k},{r_k},{{\boldsymbol{s}}_{k + 1}}} \right)$存儲(chǔ)在經(jīng)驗(yàn)池;
     (10) 直到${\text{done}} = 0$;
     (11) 循環(huán)參數(shù)更新:$j = 1,2, \cdots ,M$:
     (12) 從經(jīng)驗(yàn)池中獲得所有經(jīng)驗(yàn)$ {\left( {{{\boldsymbol{s}}_k},{{\boldsymbol{a}}_k},{r_k},{{\boldsymbol{s}}_{k + 1}}} \right)_{k \in \{ 1,2, \cdots ,K\} }} $;
     (13) 計(jì)算經(jīng)驗(yàn)池中所有狀態(tài)的狀態(tài)價(jià)值${\text{va}}{{\text{l}}_1}, \cdots ,{\text{va}}{{\text{l}}_K}$;
     (14) 計(jì)算優(yōu)勢(shì)函數(shù)的估計(jì)值$ {\hat A_1}, \cdots ,{\hat A_K} $;
     (15) 分別計(jì)算離散策略和連續(xù)策略的新舊策略比值:
        $ r_k^{\mathrmq7j3ldu95}\left( {{\theta _{\mathrmq7j3ldu95}}} \right) = \dfrac{{{\pi _{{\theta _{\mathrmq7j3ldu95}}}}({\boldsymbol{a}}_k^d|{{\boldsymbol{s}}_k})}}{{{\pi _{{\theta _{{\mathrmq7j3ldu95},{\text{old}}}}}}({\boldsymbol{a}}_k^{\mathrmq7j3ldu95}|{{\boldsymbol{s}}_k})}} $,$r_k^c\left( {{\theta _{\mathrm{c}}}} \right) = \dfrac{{{\pi _{{\theta _{\mathrm{c}}}}}({\boldsymbol{a}}_k^{\mathrm{c}}|{{\boldsymbol{s}}_k})}}{{{\pi _{{\theta _{{\mathrm{c}},{\text{old}}}}}}({\boldsymbol{a}}_k^{\mathrm{c}}|{{\boldsymbol{s}}_k})}}$;
     (16) 分別計(jì)算Actor網(wǎng)絡(luò)和Critic網(wǎng)絡(luò)的損失:$ {\text{L}}{{\text{A}}_k}\left( \theta \right) $,
        ${\text{L}}{{\text{C}}_k}{{(\omega )}}$;
     (17) 分別計(jì)算Actor網(wǎng)絡(luò)和Critic網(wǎng)絡(luò)的梯度:${\nabla _\theta }l_k^\chi \left( \theta \right)$,
        ${\nabla _\omega }l_k^V\left( \omega \right)$;
     (18) 更新參數(shù)$ \theta =\theta -\eta \text{ }{\nabla }_{\theta }{l}_{k}^{\chi }\left(\theta \right) $,$\omega = \omega - \eta {\nabla _\omega }l_k^V\left( \omega \right)$;
     (19) 直到$j = M$;
     (20) 更新舊Actor網(wǎng)絡(luò)的參數(shù):$ {\theta }_{\text{old}}=\theta $;
     (21) 清空經(jīng)驗(yàn)池;
     (22)直到$i = {\text{EP}}$,訓(xùn)練結(jié)束。
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)

    參數(shù) 取值 參數(shù) 取值
    無(wú)人機(jī)初始能量$ {E_{{\text{init}}}} $ $1 \times {10^5}{\text{ J}}$ 無(wú)人機(jī)最大飛行速度${v_{\max}}$ $30{\text{ m/s}}$
    無(wú)人機(jī)飛行高度$H$ $10{\text{ m}}$ 傳感器節(jié)點(diǎn)的數(shù)據(jù)量$D$ $5 \times {10^4}{\text{ Byte}}$
    無(wú)人機(jī)最大連通半徑$R$ $30{\text{ m}}$ LoS和NLoS依賴常數(shù)$a,b$ $ 10,0.6 $
    帶寬$W$ $ 1{\text{ MHz}} $ 信道功率${P_{\mathrmq7j3ldu95}}$ $ - 20{\text{ dBm}} $
    非視距信道額外衰減系數(shù)$\mu $ $ 0.2 $ 單位信道功率增益$\zeta $ $ - 30{\text{ dB}} $
    噪聲功率${\sigma ^2}$ $ - 90{\text{ dBm}} $ 通徑損失指數(shù)$\alpha $ $ 2.3 $
    下載: 導(dǎo)出CSV

    表  2  網(wǎng)絡(luò)參數(shù)

    參數(shù)取值
    訓(xùn)練輪數(shù)${\text{EP}}$20000
    學(xué)習(xí)率$\eta $$1 \times {10^{ - 4}}$
    獎(jiǎng)勵(lì)折扣率$\gamma $0.99
    裁剪系數(shù)$ \varepsilon $0.2
    下載: 導(dǎo)出CSV

    表  3  不同任務(wù)規(guī)模下的無(wú)人機(jī)能量消耗($1 \times {10^4}\;{\text{J}}$)

    區(qū)域邊長(zhǎng) 網(wǎng)絡(luò)規(guī)模 CH-PPO H-PPO DQN PPO VLC-GA
    200 20 1.71 1.75 2.32 2.82 2.18
    40 4.01 4.55 4.91 4.73 4.95
    60 6.10 6.72 6.82 7.08 6.93
    300 20 1.96 2.07 2.61 4.02 2.54
    40 4.89 5.21 6.84 9.28 6.91
    60 9.18 9.45 11.43 12.59 11.51
    400 20 2.02 2.11 2.92 4.46 2.84
    40 6.37 7.60 7.62 12.76 7.64
    60 10.03 10.70 12.04 14.78 12.13
    下載: 導(dǎo)出CSV

    表  4  不同任務(wù)規(guī)模下的無(wú)人機(jī)飛行距離(m)

    區(qū)域邊長(zhǎng) 網(wǎng)絡(luò)規(guī)模 CH-PPO H-PPO DQN PPO VLC-GA
    200 20 1488 1560 2398 2805 2249
    40 3600 4308 5102 4596 5155
    60 5922 6566 7025 6818 7175
    300 20 1785 1837 2734 4115 2654
    40 4471 4802 7270 9641 7356
    60 8483 8785 12173 12526 12322
    400 20 1898 1921 3066 4623 2991
    40 6001 7242 8121 10767 8177
    60 9367 9964 12880 13135 13019
    下載: 導(dǎo)出CSV

    表  5  不同任務(wù)規(guī)模下的任務(wù)時(shí)間(s)

    區(qū)域邊長(zhǎng) 網(wǎng)絡(luò)規(guī)模 CH-PPO H-PPO DQN PPO VLC-GA
    200 20 100 105 138 172 130
    40 241 259 291 293 293
    60 323 345 406 440 412
    300 20 121 125 154 241 150
    40 297 290 399 550 403
    60 550 489 669 684 673
    400 20 126 131 171 264 167
    40 355 424 443 583 445
    60 584 549 699 762 704
    下載: 導(dǎo)出CSV

    表  6  不同任務(wù)規(guī)模和AoI閾值下的無(wú)人機(jī)能量消耗($1 \times {10^4}\;{\text{J}}$)

    AoI閾值[60,80][90,110][120,140]
    區(qū)域邊長(zhǎng)網(wǎng)絡(luò)規(guī)模

    200
    201.901.711.45
    405.774.013.83
    608.246.105.89

    300
    202.191.961.55
    407.794.894.29
    6010.479.187.96

    400
    202.292.021.95
    408.366.375.80
    6011.3410.039.57
    下載: 導(dǎo)出CSV
  • [1] AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: A survey[J]. Computer Networks, 2002, 38(4): 393–422. doi: 10.1016/S1389-1286(01)00302-4.
    [2] HAYAT S, YANMAZ E, and MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661. doi: 10.1109/COMST.2016.2560343.
    [3] MOTLAGH N H, BAGAA M, and TALEB T. UAV-based IoT platform: A crowd surveillance use case[J]. IEEE Communications Magazine, 2017, 55(2): 128–134. doi: 10.1109/MCOM.2017.1600587CM.
    [4] HU Jie, WANG Tuan, YANG Jiacheng, et al. WSN-assisted UAV trajectory adjustment for pesticide drift control[J]. Sensors, 2020, 20(19): 5473. doi: 10.3390/s20195473.
    [5] 周彬, 郭艷, 李寧, 等. 基于導(dǎo)向強(qiáng)化Q學(xué)習(xí)的無(wú)人機(jī)路徑規(guī)劃[J]. 航空學(xué)報(bào), 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.

    ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.
    [6] ZHOU Conghao, WU Wen, HE Hongli, et al. Delay-aware IoT task scheduling in space-air-ground integrated network[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013393.
    [7] LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic utilization of dynamic multi-UAV in device-to-device communication networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 1069–1083. doi: 10.1109/TCCN.2020.2991436.
    [8] 張廣馳, 何梓楠, 崔苗. 基于深度強(qiáng)化學(xué)習(xí)的無(wú)人機(jī)輔助移動(dòng)邊緣計(jì)算系統(tǒng)能耗優(yōu)化[J]. 電子與信息學(xué)報(bào), 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.

    ZHANG Guangchi, HE Zinan, and CUI Miao. Energy consumption optimization of unmanned aerial vehicle assisted mobile edge computing systems based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.
    [9] LUO Chuanwen, CHEN Wenping, LI Deying, et al. Optimizing flight trajectory of UAV for efficient data collection in wireless sensor networks[J]. Theoretical Computer Science, 2021, 853: 25–42. doi: 10.1016/j.tcs.2020.05.019.
    [10] ZHU Yuchao and WANG Shaowei. Efficient aerial data collection with cooperative trajectory planning for large-scale wireless sensor networks[J]. IEEE Transactions on Communications, 2022, 70(1): 433–444. doi: 10.1109/TCOMM.2021.3124950.
    [11] ZHAN Cheng and ZENG Yong. Completion time minimization for multi-UAV-enabled data collection[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859–4872. doi: 10.1109/TWC.2019.2930190.
    [12] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [13] 張建行, 康凱, 錢(qián)驊, 等. 面向物聯(lián)網(wǎng)的深度Q網(wǎng)絡(luò)無(wú)人機(jī)路徑規(guī)劃[J]. 電子與信息學(xué)報(bào), 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.

    ZHANG Jianhang, KANG Kai, QIAN Hua, et al. UAV trajectory planning based on deep Q-network for internet of things[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.
    [14] LIAO Yuan and FRIDERIKOS V. Energy and age pareto optimal trajectories in UAV-assisted wireless data collection[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 9101–9106. doi: 10.1109/TVT.2022.3175318.
    [15] SHERMAN M, SHAO Sihua, SUN Xiang, et al. Optimizing AoI in UAV-RIS-assisted IoT networks: Off policy versus on policy[J]. IEEE Internet of Things Journal, 2023, 10(14): 12401–12415. doi: 10.1109/JIOT.2023.3246925.
    [16] SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701.
    [17] LIU Juan, TONG Peng, WANG Xijun, et al. UAV-aided data collection for information freshness in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2368–2382. doi: 10.1109/TWC.2020.3041750.
    [18] DAI Zipeng, LIU C H, YE Yuxiao, et al. AoI-minimal UAV crowdsensing by model-based graph convolutional reinforcement learning[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1029–1038. doi: 10.1109/INFOCOM48880.2022.9796732.
    [19] LIU Kai and ZHENG Jun. UAV trajectory optimization for time-constrained data collection in UAV-enabled environmental monitoring systems[J]. IEEE Internet of Things Journal, 2022, 9(23): 24300–24314. doi: 10.1109/JIOT.2022.3189214.
    [20] SUN Yin, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: How to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492–7508. doi: 10.1109/TIT.2017.2735804.
    [21] YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
    [22] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [23] FAN Zhou, SU Rui, ZHANG Weinan, et al. Hybrid actor-critic reinforcement learning in parameterized action space[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019.
    [24] HA V P, DAO T K, PHAM N Y, et al. A variable-length chromosome genetic algorithm for time-based sensor network schedule optimization[J]. Sensors, 2021, 21(12): 3990. doi: 10.3390/s21123990.
  • 加載中
圖(6) / 表(7)
計(jì)量
  • 文章訪問(wèn)數(shù):  321
  • HTML全文瀏覽量:  86
  • PDF下載量:  42
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-09-05
  • 網(wǎng)絡(luò)出版日期:  2024-09-10
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回