一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

智能超表面輔助多用戶系統(tǒng)的通用低復(fù)雜度波束成形設(shè)計

陳曉 施建鋒 朱建月 潘存華

陳曉, 施建鋒, 朱建月, 潘存華. 智能超表面輔助多用戶系統(tǒng)的通用低復(fù)雜度波束成形設(shè)計[J]. 電子與信息學(xué)報, 2025, 47(1): 128-137. doi: 10.11999/JEIT240051
引用本文: 陳曉, 施建鋒, 朱建月, 潘存華. 智能超表面輔助多用戶系統(tǒng)的通用低復(fù)雜度波束成形設(shè)計[J]. 電子與信息學(xué)報, 2025, 47(1): 128-137. doi: 10.11999/JEIT240051
CHEN Xiao, SHI Jianfeng, ZHU Jianyue, PAN Cunhua. General Low-complexity Beamforming Designs for Reconfigurable Intelligent Surface-aided Multi-user Systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 128-137. doi: 10.11999/JEIT240051
Citation: CHEN Xiao, SHI Jianfeng, ZHU Jianyue, PAN Cunhua. General Low-complexity Beamforming Designs for Reconfigurable Intelligent Surface-aided Multi-user Systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 128-137. doi: 10.11999/JEIT240051

智能超表面輔助多用戶系統(tǒng)的通用低復(fù)雜度波束成形設(shè)計

doi: 10.11999/JEIT240051
基金項目: 國家自然科學(xué)基金(62101273, 62201274),江蘇省自然科學(xué)基金(BK20210641, BK20220439)
詳細(xì)信息
    作者簡介:

    陳曉:女,講師,研究方向為智能超表面、大規(guī)模MIMO系統(tǒng)、基于深度學(xué)習(xí)通信技術(shù)等

    施建鋒:男,副教授,研究方向為天地一體化網(wǎng)絡(luò)、波束成形理論、基于機器學(xué)習(xí)通信技術(shù)等

    朱建月:女,講師,研究方向為非正交多址接入技術(shù)、無線資源管理等

    潘存華:男,教授,研究方向為無線通信傳輸設(shè)計,信道估計與定位,通感一體化,AI輔助通信等

    通訊作者:

    陳曉 x.chen@nuist.edu.cn

  • 中圖分類號: TN929.5

General Low-complexity Beamforming Designs for Reconfigurable Intelligent Surface-aided Multi-user Systems

Funds: The National Natural Science Foundation of China (62101273, 62201274), The Natural Science Foundation of Jiangsu Province of China (BK20210641, BK20220439)
  • 摘要: 針對可重構(gòu)智能超表面(RIS)輔助多用戶系統(tǒng)中基站和RIS聯(lián)合波束成形設(shè)計問題,該文提出通用低復(fù)雜度聯(lián)合波束成形設(shè)計方案。首先,分析RIS輔助多用戶系統(tǒng)以最大化和數(shù)據(jù)速率為目標(biāo)的聯(lián)合波束成形非凸優(yōu)化問題。其次,利用波束導(dǎo)向矢量近似正交性設(shè)計RIS反射矩陣,進(jìn)一步利用迫零方法設(shè)計基站發(fā)射波束成形,并對多用戶進(jìn)行功率分配優(yōu)化。最后,討論該方案適用性并對比該方案的計算復(fù)雜度相比現(xiàn)有方案降低了一個數(shù)量級。仿真結(jié)果表明,所提通用低復(fù)雜度波束成形設(shè)計可以獲得較高和數(shù)據(jù)速率,并且采用最優(yōu)功率分配可以進(jìn)一步提高和數(shù)據(jù)速率。此外,仿真結(jié)果和理論分析都表明系統(tǒng)和數(shù)據(jù)速率隨RIS位置的變化而變化,該結(jié)論為RIS位置的選擇提供參考依據(jù)。
  • 圖  1  系統(tǒng)模型

    圖  2  和數(shù)據(jù)速率與反射元件數(shù)$ N $的關(guān)系,$ K = 4 $, $ {d_{{\text{BR}}}} = {d_{{\text{RU}}}} = 30{\kern 1pt} {\kern 1pt} {\text{m}} $

    圖  3  LoS信道和萊斯信道和數(shù)據(jù)速率對比,$ K = 4 $,$ {d_{{\text{BR}}}} = {d_{{\text{RU}}}} = 30{\kern 1pt} {\kern 1pt} {\text{m}} $

    圖  4  和數(shù)據(jù)速率與RIS和UEs間距$ {d_{{\text{RU}}}} $的關(guān)系,$ K = 4 $, $ N = 64 $

    圖  5  和數(shù)據(jù)速率與用戶數(shù)$ K $的關(guān)系,$ N = 64 $, $ {d_{{\text{BR}}}} = {d_{{\text{RU}}}} = 30{\kern 1pt} {\kern 1pt} {\text{m}} $

    1  低復(fù)雜度聯(lián)合波束成形設(shè)計算法

     輸入:初始化$ \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta }}}{\text{,}}{ {\boldsymbol{P}}}} \right) $
     步驟1 基于已知BS-RIS信道$ {{\boldsymbol{G}}} $和RIS-UEs信道$ {{{\boldsymbol{H}}}_{\text{r}}} $和引理1,根
     據(jù)式(14)計算RIS反射矩陣$ {{\boldsymbol{\varTheta}} } $;
     步驟2 基于ZF理論,根據(jù)式(19)計算BS發(fā)射波束成形$ {{\boldsymbol{W}}} $;
     步驟3 基于WF理論,根據(jù)式(23)計算功率分配矢量$ {{\boldsymbol{P}}} $;
     步驟4 輸出優(yōu)化得到的$ \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta}} }{\text{,}}{ {\boldsymbol{P}}}} \right) $。
    下載: 導(dǎo)出CSV

    表  1  波束成形方案計算復(fù)雜度對比

    文獻(xiàn) 復(fù)雜度 參數(shù)
    文獻(xiàn) [3] $ \mathcal{O}\left( {{N^6}} \right) $ N:RIS反射元件數(shù)
    文獻(xiàn)[18] $ \mathcal{O}\left( {{I_{\text{o}}}\left( {{I_{\text{a}}}{M^2}{K^2} + {I_{\text{p}}}{N^2}} \right)} \right) $ M:基站發(fā)射天線數(shù)
    文獻(xiàn)[16] $ \mathcal{O}\left( {Q\left( {{M^3} + M{N^2} + N!} \right)} \right) $ K:用戶數(shù)
    文獻(xiàn)[17] $ \mathcal{O}\left( {NI\left( {K{M^2}} \right)} \right) $ $ {I_{\text{o}}} $,$ {I_{\text{a}}} $,$ {I_{\text{p}}} $,$ I $:迭代次數(shù)
    本文 $ \mathcal{O}\left( {N + {K^2}M + {K^3}} \right) $ Q:預(yù)設(shè)訓(xùn)練集數(shù)目
    下載: 導(dǎo)出CSV
  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [3] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [4] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [5] JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi: 10.1109/TWC.2021.3066806.
    [6] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [7] 李興旺, 田志發(fā), 張建華, 等. IRS輔助NOMA網(wǎng)絡(luò)下隱蔽性能研究[J]. 中國科學(xué): 信息科學(xué), 2023. doi: 10.1360/SSI-2023-0174.

    LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2023. doi: 10.1360/SSI-2023-0174.
    [8] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [9] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811.
    [10] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061.
    [11] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
    [12] LIU Sifan, LIU Rang, LI Ming, et al. Joint BS-RIS-user association and beamforming design for RIS-assisted cellular networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6113–6128. doi: 10.1109/TVT.2022.3231347.
    [13] 李國權(quán), 黨剛, 林金朝, 等. RIS輔助的MISO系統(tǒng)安全魯棒波束賦形算法[J]. 電子與信息學(xué)報, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894.

    LI Guoquan, DANG Gang, LIN Jinzhao, et al. Secure and robust beamforming algorithm for RIS assisted MISO systems[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894.
    [14] WANG Peilan, FANG Jun, DAI Linglong, et al. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1052–1064. doi: 10.1109/TWC.2020.3030570.
    [15] HE Zhenyao, SHEN Hong, XU Wei, et al. Low-cost passive beamforming for RIS-aided wideband OFDM systems[J]. IEEE Wireless Communications Letters, 2022, 11(2): 318–322. doi: 10.1109/LWC.2021.3126852.
    [16] AN Jiancheng, XU Chao, GAN Lu, et al. Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts[J]. IEEE Transactions on Communications, 2022, 70(2): 1245–1260. doi: 10.1109/TCOMM.2021.3127924.
    [17] ALMEKHLAFI M, ARFAOUI M A, ASSI C, et al. A low complexity passive beamforming design for reconfigurable intelligent surface (RIS) in 6G networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6309–6321. doi: 10.1109/TVT.2022.3233469.
    [18] SU Ruochen, DAI Linglong, and NG D W K. Wideband precoding for RIS-aided THz communications[J]. IEEE Transactions on Communications, 2023, 71(6): 3592–3604. doi: 10.1109/TCOMM.2023.3263230.
    [19] ZHANG Zijian and DAI Linglong. A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network[J]. IEEE Transactions on Signal Processing, 2021, 69: 4085–4101. doi: 10.1109/TSP.2021.3088755.
    [20] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [21] LI Xingwang, GAO Xuesong, LIU Yingting, et al. Overlay CR-NOMA assisted intelligent transportation system networks with imperfect SIC and CEEs[J]. Chinese Journal of Electronics, 2023, 32(6): 1258–1270. doi: 10.23919/cje.2022.00.071.
    [22] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  485
  • HTML全文瀏覽量:  128
  • PDF下載量:  71
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-03-15
  • 網(wǎng)絡(luò)出版日期:  2024-03-26
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回