一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于頻譜地圖重構(gòu)的輻射源識(shí)別

王雪剛 王方剛 王意卓

王雪剛, 王方剛, 王意卓. 基于頻譜地圖重構(gòu)的輻射源識(shí)別[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
引用本文: 王雪剛, 王方剛, 王意卓. 基于頻譜地圖重構(gòu)的輻射源識(shí)別[J]. 電子與信息學(xué)報(bào), 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
WANG Xuegang, WANG Fanggang, WANG Yizhuo. Specific Emitter Identification Based on Radio Environment Map Reconstruction[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
Citation: WANG Xuegang, WANG Fanggang, WANG Yizhuo. Specific Emitter Identification Based on Radio Environment Map Reconstruction[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050

基于頻譜地圖重構(gòu)的輻射源識(shí)別

doi: 10.11999/JEIT240050
基金項(xiàng)目: 中央高?;究蒲袠I(yè)務(wù)費(fèi)(2022JBQY004),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFB1806903),國(guó)家自然科學(xué)基金(62221001),國(guó)家自然科學(xué)基金鐵路基礎(chǔ)研究聯(lián)合基金(U2368201)
詳細(xì)信息
    作者簡(jiǎn)介:

    王雪剛:男,博士生,研究方向?yàn)轭l譜感知、信號(hào)識(shí)別

    王方剛:男,教授,研究方向?yàn)閷拵б苿?dòng)通信系統(tǒng)與專用移動(dòng)通信、信息處理與人工智能

    王意卓:男,研究方向?yàn)闊o線通信與信號(hào)處理

    通訊作者:

    王方剛 wangfg@bjtu.edu.cn

  • 中圖分類號(hào): TN911.7

Specific Emitter Identification Based on Radio Environment Map Reconstruction

Funds: The Fundamental Research Funds for the Central Universities (2022JBQY004), The National Key R&D Program of China (2020YFB1806903), The National Natural Science Foundation of China (62221001), The Joint Funds for Railway Fundamental Research of National Natural Science Foundation of China (U2368201)
  • 摘要: 無線環(huán)境地圖(REM)是呈現(xiàn)電磁態(tài)勢(shì)的一種有效形式,考慮實(shí)際觀測(cè)的不完整頻譜地圖受到干擾和噪聲污染的問題,該文對(duì)頻譜地圖進(jìn)行重構(gòu),并在此基礎(chǔ)上完成輻射源識(shí)別。首先,將復(fù)雜電磁環(huán)境下的頻譜地圖建模為高維張量,在預(yù)處理中通過線性插值對(duì)其初始化補(bǔ)全。然后,使用視覺Transformer模型解決語(yǔ)義分割問題以識(shí)別頻譜語(yǔ)義區(qū)域,區(qū)域中僅單一輻射源功率占主導(dǎo),每個(gè)語(yǔ)義張量的低秩性得以保留。提出了一種壓縮式張量分解算法,并采用交替方向乘子法(ADMM)在語(yǔ)義區(qū)域中重構(gòu)期望信號(hào)頻譜和干擾;最后,在重構(gòu)的頻譜地圖上檢測(cè)未知輻射源的位置。該方法能夠充分利用頻譜數(shù)據(jù)的低秩性,適用于廣域多輻射源個(gè)體的電磁場(chǎng)景。實(shí)驗(yàn)結(jié)果表明,所提方法比現(xiàn)有方法具有更優(yōu)的重構(gòu)性能,降低了達(dá)到相同頻譜地圖恢復(fù)精度時(shí)對(duì)觀測(cè)樣本比例的要求,并能夠準(zhǔn)確檢測(cè)輻射源。
  • 圖  1  頻譜地圖重構(gòu)示意圖

    圖  2  基于 ViT 的頻譜語(yǔ)義分割模型結(jié)構(gòu)

    圖  3  不同算法頻譜地圖重構(gòu)性能

    圖  4  基于語(yǔ)義分割的頻譜重構(gòu)算法收斂性

    圖  5  輻射源檢測(cè)性能比較

    1  基于語(yǔ)義分割的頻譜地圖重構(gòu)算法

     輸入:初始補(bǔ)全張量$ {{\tilde{ {\boldsymbol{\mathcal{Y}}}}}_m} $,語(yǔ)義標(biāo)簽$ {{{\boldsymbol{\mathcal{L}}}}_m} $, $ m \in {{\mathcal{I}}_M} $,迭代次數(shù)K;
     輸出:重構(gòu)的期望頻譜$ {\tilde {\boldsymbol{\mathcal{X}}}} $;
     初始化:$ {\tilde{ {\boldsymbol{\mathcal{X}}}}}_m^{(1)} = {\bf{0}} $, $ {\tilde {{\boldsymbol{\mathcal{S}}}}}_m^{(1)} = 0 $, $ {\lambda ^{(1)}} = 0 $, $ {\beta ^{(1)}} = {10^{ - 6}} $,
     $ {\beta _{\max }} = {10^{10}} $, $ \rho = 1.2 $,m = 1, $ k = 1 $;
     (1) 當(dāng)$ ||{{\boldsymbol{\mathcal{X}}}_m}||_{{\mathrm{F}}} ^2 $未收斂且$ k < K $,重復(fù)步驟(2)~(7);
     (2)  使用式(22)更新$ {\boldsymbol{\mathcal{X}}}_m^{(k + 1)} $;
     (3)  使用式(24)更新$ {{\boldsymbol{\mathcal{S}}}}_m^{(k + 1)} $;
     (4)  使用式(25)更新$ \lambda _m^{(k + 1)} $;
     (5)  使用式(26)更新$ c_m^{(k + 1)} $;
     (6)  $ {\beta ^{(k + 1)}} = \min \{ \rho {\beta ^{(k)}},{\beta _{{\text{max}}}}\} $;
     (7)  k = k+1;
     (8) m = m+1;
     (9) 重復(fù)步驟(1)、步驟(8),直到m = M;
     (10) $ {\tilde {\boldsymbol{\mathcal{X}}}}{\text{ = }}\displaystyle\sum\nolimits_{m = 1}^M {{{\boldsymbol{\mathcal{X}}}_m} \odot } {{{\boldsymbol{\mathcal{L}}}}_m} $。
    下載: 導(dǎo)出CSV
  • [1] HO K C and LE T K. Integrating AOA with TDOA for joint source and sensor localization[J]. IEEE Transactions on Signal Processing, 2023, 71: 2087–2102. doi: 10.1109/TSP.2023.3280417.
    [2] LIU Yan, SHEN Yuan, and WIN M Z. Single-anchor localization and synchronization of full-duplex agents[J]. IEEE Transactions on Communications, 2019, 67(3): 2355–2367. doi: 10.1109/TCOMM.2018.2878843.
    [3] YILMAZ H B and TUGCU T. Location estimation-based radio environment map construction in fading channels[J]. Wireless Communications and Mobile Computing, 2015, 15(3): 561–570. doi: 10.1002/wcm.2367.
    [4] SHIN B, LEE J H, KIM C, et al. LTE RSSI based vehicular localization system in long tunnel environment[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 11102–11114. doi: 10.1109/TII.2023.3240690.
    [5] CHAUDHARI S and CABRIC D. Cyclic weighted centroid algorithm for transmitter localization in the presence of interference[J]. IEEE Transactions on Cognitive Communications and Networking, 2016, 2(2): 162–177. doi: 10.1109/TCCN.2016.2586078.
    [6] 張國(guó)勇, 王軍, 陳霄南, 等. 基于空間稀疏采樣的頻譜態(tài)勢(shì)生成: 模型與算法[J]. 中國(guó)科學(xué): 信息科學(xué), 2022, 52(11): 2011–2036. doi: 10.1360/SSI-2021-0382.

    ZHANG Guoyong, WANG Jun, CHEN Xiaonan, et al. Spectrum situation generation from sparse spatial sampling: Model and algorithm[J]. Scientia Sinica Informationis, 2022, 52(11): 2011–2036. doi: 10.1360/SSI-2021-0382.
    [7] DEBROY S, BHATTACHARJEE S, and CHATTERJEE M. Spectrum map and its application in resource management in cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(4): 406–419. doi: 10.1109/TCCN.2016.2517001.
    [8] SATO K, SUTO K, INAGE K, et al. Space-frequency-interpolated radio map[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 714–725. doi: 10.1109/TVT.2021.3049894.
    [9] ZHANG Yongliang and MA Lin. Radio map crowdsourcing update method using sparse representation and low rank matrix recovery for WLAN indoor positioning system[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1188–1191. doi: 10.1109/LWC.2021.3061539.
    [10] CAI Jianfeng, CANDèS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
    [11] SIDIROPOULOS N D, DE LATHAUWER L, FU Xiao, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3551–3582. doi: 10.1109/TSP.2017.2690524.
    [12] TANG Mengyun, DING Guoru, WU Qihui, et al. A joint tensor completion and prediction scheme for multi-dimensional spectrum map construction[J]. IEEE Access, 2016, 4: 8044–8052. doi: 10.1109/ACCESS.2016.2627243.
    [13] LIN Yun, TU Ya, DOU Zheng, et al. Contour Stella image and deep learning for signal recognition in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 34–46. doi: 10.1109/TCCN.2020.3024610.
    [14] WANG Chenyue, WU Yuhang, ZHOU Fuhui, et al. Accurate spectrum map construction using an intelligent frequency-spatial reasoning approach[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 3460–3465. doi: 10.1109/GLOBECOM48099.2022.10001024.
    [15] SHRESTHA S, FU Xiao, and HONG Mingyi. Deep spectrum cartography: Completing radio map tensors using learned neural models[J]. IEEE Transactions on Signal Processing, 2022, 70: 1170–1184. doi: 10.1109/TSP.2022.3145190.
    [16] HU Tianyu, HUANG Yang, CHEN Junting, et al. 3D radio map reconstruction based on generative adversarial networks under constrained aircraft trajectories[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8250–8255. doi: 10.1109/TVT.2023.3239556.
    [17] LEVIE R, YAPAR ?, KUTYNIOK G, et al. RadioUNet: Fast radio map estimation with convolutional neural networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 4001–4015. doi: 10.1109/TWC.2021.3054977.
    [18] LIN Yun, ZHAO Haojun, MA Xuefei, et al. Adversarial attacks in modulation recognition with convolutional neural networks[J]. IEEE Transactions on Reliability, 2021, 70(1): 389–401. doi: 10.1109/TR.2020.3032744.
    [19] MENG Lingchen, LI Hengduo, CHEN B C, et al. AdaViT: Adaptive vision transformers for efficient image recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12299–12308. doi: 10.1109/CVPR52688.2022.01199.
    [20] LI Hongyu, LI Jie, SHEN Feng, et al. SOC algorithm-based framework for spectrum occupancy completion[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(5): 1155–1166. doi: 10.1109/TCCN.2023.3269763.
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪問數(shù):  607
  • HTML全文瀏覽量:  310
  • PDF下載量:  134
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-07-16
  • 網(wǎng)絡(luò)出版日期:  2024-07-24
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回