支持無線采能及簇間負載均衡的無人機輔助數(shù)據(jù)調(diào)度及軌跡優(yōu)化算法
doi: 10.11999/JEIT240048
-
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
基金項目: 國家自然科學(xué)基金(62271097)
Wireless Energy Harvest and Inter-Cluster Load Balancing-Enabled UAV-Assisted Data Scheduling and Trajectory Optimization Algorithms
-
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds: The National Natural Science Foundation of China(62271097)
-
摘要: 該文研究了無人機(UAV)輔助無線傳感器網(wǎng)絡(luò)的數(shù)據(jù)收集問題。首先提出基于均值漂移算法的傳感器節(jié)點(SN)初始分簇策略,進而以簇間負載均衡為目標,設(shè)計SN切換算法?;谒贸纱夭呗?,將UAV數(shù)據(jù)收集及軌跡規(guī)劃問題建模為系統(tǒng)能耗最小化問題。由于該問題是一個非凸問題,難以直接求解,將其分為兩個子問題,即數(shù)據(jù)調(diào)度子問題及UAV軌跡規(guī)劃子問題。針對數(shù)據(jù)調(diào)度子問題,提出一種基于多時隙庫恩-蒙克雷斯算法的時頻資源調(diào)度策略。針對UAV軌跡規(guī)劃子問題,將其建模為馬爾可夫決策過程,并提出一種基于深度Q網(wǎng)絡(luò)的UAV軌跡規(guī)劃算法。仿真結(jié)果驗證了所提算法的有效性。
-
關(guān)鍵詞:
- 無人機 /
- 數(shù)據(jù)收集 /
- 軌跡優(yōu)化 /
- 馬爾可夫決策過程
Abstract: Data collection problem in an Unmanned Aerial Vehicle (UAV)-assisted wireless sensor network is addressed. Firstly, an initial Sensor Node (SN) clustering strategy is proposed based on the mean drift algorithm, then an SN switching algorithm is designed to achieve load balancing between clusters. Based on the obtained clustering strategy, the UAV data collection and trajectory planning problem is formulated as a system energy consumption minimization problem. Since the formulated problem is a non-convex problem and is difficult to solve directly, it is decoupled into two subproblems, namely data scheduling subproblem and UAV trajectory planning subproblem. To tackle the data scheduling subproblem, a multi-slot Kuhn-Munkres algorithm-based time-frequency resource scheduling strategy is proposed. To solve the UAV trajectory planning subproblem, the problem is modeled as a Markov decision-making process, and a deep Q-network-based algorithm is proposed. Simulation results verify the effectiveness of the proposed algorithm.-
Key words:
- Unmanned aerial vehicle /
- Data collection /
- Trajectory planning /
- Markov decision process
-
表 1 仿真參數(shù)設(shè)置
仿真參數(shù) 數(shù)值 SN數(shù)據(jù)量$ {\varphi _k} $ [0, 1024 ] MB載波頻率Cf [1, 3] GHz 節(jié)點可用帶寬B 1 MHz SN發(fā)射功率pc 0.1 W UAV飛行高度H 70 m UAV飛行速度v 10 m/s UAV平均轉(zhuǎn)子誘導(dǎo)速度v0 4.03 m/s 空氣密度ρ 1.225 km/m3 轉(zhuǎn)子盤面積Sr 0.503 m2 下載: 導(dǎo)出CSV
-
[1] 孫利民, 張書欽, 李志, 等. 無線傳感器網(wǎng)絡(luò): 理論及應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2018: 5–18.SUN Limin, ZHANG Shuqin, LI Zhi, et al. Wireless Sensor Networks: Theory and Applications[M]. Beijing: Tsinghua University Press, 2018: 5–18. [2] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933. [3] WEI Zhiqing, ZHU Mingyue, ZHANG Ning, et al. UAV-assisted data collection for Internet of things: A survey[J]. IEEE Internet of Things Journal, 2022, 9(17): 15460–15483. doi: 10.1109/JIOT.2022.3176903. [4] AHANI G, YUAN Di, and ZHAO Yixin. Age-optimal UAV scheduling for data collection with battery recharging[J]. IEEE Communications Letters, 2021, 25(4): 1254–1258. doi: 10.1109/LCOMM.2020.3047909. [5] SAMIR M, ASSI C, SHARAFEDDINE S, et al. Online altitude control and scheduling policy for minimizing AoI in UAV-assisted IoT wireless networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(7): 2493–2505. doi: 10.1109/TMC.2020.3042925. [6] LUAN Qiuji, CUI Hongyan, ZHANG Lifeng, et al. A hierarchical hybrid subtask scheduling algorithm in UAV-assisted MEC emergency network[J]. IEEE Internet of Things Journal, 2022, 9(14): 12737–12753. doi: 10.1109/JIOT.2021.3138263. [7] ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1343–1358. doi: 10.1109/TWC.2022.3204438. [8] INDU, SINGH R P, CHOUDHARY H R, et al. Trajectory design for UAV-to-ground communication with energy optimization using genetic algorithm for agriculture application[J]. IEEE Sensors Journal, 2021, 21(16): 17548–17555. doi: 10.1109/JSEN.2020.3046463. [9] CHEN Jinchao, DU Chenglie, ZHANG Ying, et al. A clustering-based coverage path planning method for autonomous heterogeneous UAVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25546–25556. doi: 10.1109/TITS.2021.3066240. [10] SHEN Kun, SHIVGAN R, MEDINA J, et al. Multidepot drone path planning with collision avoidance[J]. IEEE Internet of Things Journal, 2022, 9(17): 16297–16307. doi: 10.1109/JIOT.2022.3151791. [11] MA Ting, ZHOU Haibo, QIAN Bo, et al. UAV-LEO integrated backbone: A ubiquitous data collection approach for B5G internet of remote things networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3491–3505. doi: 10.1109/JSAC.2021.3088626. [12] YUAN Xiaopeng, HU Yulin, ZHANG Jian, et al. Joint user scheduling and UAV trajectory design on completion time minimization for UAV-aided data collection[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3884–3898. doi: 10.1109/TWC.2022.3222067. [13] LIU Wentao, LI Dong, LIANG Tianhao, et al. Joint trajectory and scheduling optimization for age of synchronization minimization in UAV-assisted networks with random updates[J]. IEEE Transactions on Communications, 2023, 71(11): 6633–6646. doi: 10.1109/TCOMM.2023.3297198. [14] CHAI Shuqi and LAU V K N. Multi-UAV trajectory and power optimization for cached UAV wireless networks with energy and content recharging-demand driven deep learning approach[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3208–3224. doi: 10.1109/JSAC.2021.3088694. [15] WANG Jun, NA Zhenyu, and LIU Xin. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled Internet of things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096–15106. doi: 10.1109/JIOT.2020.3031622. -