一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

大規(guī)模STAR-RIS輔助的近場(chǎng)ISAC傳輸方法

王小明 李佳琪 劉婷 蔣銳 徐友云

王小明, 李佳琪, 劉婷, 蔣銳, 徐友云. 大規(guī)模STAR-RIS輔助的近場(chǎng)ISAC傳輸方法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 147-155. doi: 10.11999/JEIT240018
引用本文: 王小明, 李佳琪, 劉婷, 蔣銳, 徐友云. 大規(guī)模STAR-RIS輔助的近場(chǎng)ISAC傳輸方法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 147-155. doi: 10.11999/JEIT240018
WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology, 2025, 47(1): 147-155. doi: 10.11999/JEIT240018
Citation: WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology, 2025, 47(1): 147-155. doi: 10.11999/JEIT240018

大規(guī)模STAR-RIS輔助的近場(chǎng)ISAC傳輸方法

doi: 10.11999/JEIT240018
基金項(xiàng)目: 國(guó)家自然科學(xué)基金 (62101274, 62371246)
詳細(xì)信息
    作者簡(jiǎn)介:

    王小明:男,副教授,研究方向?yàn)闊o(wú)線(xiàn)移動(dòng)通信

    李佳琪:女,碩士生,研究方向?yàn)橥ㄐ鸥兄惑w化

    劉婷:女,副教授,研究方向?yàn)闊o(wú)線(xiàn)移動(dòng)通信

    蔣銳:男,副教授,研究方向?yàn)闊o(wú)線(xiàn)移動(dòng)通信

    徐友云:男,教授,研究方向?yàn)闊o(wú)線(xiàn)移動(dòng)通信

    通訊作者:

    李佳琪 1222014134@njupt.edu.cn

  • 中圖分類(lèi)號(hào): TN929.5

Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method

Funds: The National Natural Science Foundation of China (62101274, 62371246)
  • 摘要: 同時(shí)透射和反射可重構(gòu)智能表面(STAR-RIS)能夠創(chuàng)建全空間智能無(wú)線(xiàn)電環(huán)境,有效提高無(wú)線(xiàn)通信系統(tǒng)性能,具有廣闊的研究潛力。因此,該文提出一種大規(guī)模STAR-RIS輔助的近場(chǎng)通感一體化(ISAC)方法,并對(duì)感知目標(biāo)3維參數(shù)估計(jì)的克拉美羅界(CRB)進(jìn)行優(yōu)化。首先,搭建近場(chǎng)系統(tǒng)模型,分別推導(dǎo)基站、STAR-RIS、通信用戶(hù)、感知目標(biāo)與傳感器之間的導(dǎo)向矢量。其次,通過(guò)設(shè)計(jì)基站發(fā)射波束成形矩陣、發(fā)射信號(hào)協(xié)方差矩陣和STAR-RIS透射反射系數(shù),實(shí)現(xiàn)感知性能最優(yōu)化。再次,針對(duì)非凸優(yōu)化問(wèn)題利用半正定松弛方法進(jìn)行求解。仿真結(jié)果表明了所提出ISAC方案的有效性,以及近場(chǎng)額外距離自由度所帶來(lái)的定位性能優(yōu)勢(shì)。
  • 圖  1  導(dǎo)向矢量的推導(dǎo)模型

    圖  2  CRB根值與通信用戶(hù)SINR閾值的關(guān)系

    圖  3  CRB根值與傳感元件個(gè)數(shù)${N_{\mathrm{s}}}$的關(guān)系

    圖  4  感知目標(biāo)定位的3維切片圖,$\tilde \gamma = 0$

    圖  5  感知目標(biāo)定位的3維切片圖,$\tilde \gamma {\text{ = 20}}\;{\text{dB}}$

    1  優(yōu)化過(guò)程算法

     初始化參數(shù):${\nu ^l}$, ${\eta ^l}$, ${{\boldsymbol{\varLambda}} ^l}$;設(shè)置外層收斂精度$0 < \chi < 1$,迭代
     次數(shù)初始化$m = 1$,最大迭代次數(shù)為${M_{{\text{max}}}}$;內(nèi)層收斂精度
     $0 < c < 1$,迭代次數(shù)為$u$,最大迭代次數(shù)為${U_{{\text{max}}}}$,懲罰因子更
     新參數(shù)為$0 < d < 1$;初始化h$\left( {{\nu ^0}} \right)$;
     (1) While$\left| {h\left( {{\nu ^m}} \right) - h\left( {{\nu ^{m - 1}}} \right)} \right| \ge \chi $ or $m \le {M_{{\text{max}}}}$ do
     (2)  $u = 1$
     (3)  While $\left| {{\text{tr}}{{({{\boldsymbol{E}}^{ - 1}})}^u} - {\text{tr}}{{({{\boldsymbol{E}}^{ - 1}})}^{u - 1}}} \right| \ge c$ or $u \le {U_{{\text{max}}}}$ do
     (4)   固定${\varepsilon ^u}$,求得$ \mathcal{S}\mathcal{P}1 $的最優(yōu)解$\tilde \tau $并更新${\left( {\tilde \tau } \right)^u}$;
     (5)   固定${\left( {\tilde \tau } \right)^u}$,求得$ \mathcal{S}\mathcal{P}2 $的最優(yōu)解$\tilde \varepsilon $并更新${\left( {\tilde \varepsilon } \right)^u}$;
     (6)   設(shè)置迭代次數(shù)$u = u + 1$;
     (7)  End while
     (8)  If $h\left( {{\nu ^m}} \right) \le 0.95h\left( {{\nu ^{m - 1}}} \right)$ then
     (9)   將${\left( {\tilde \varepsilon } \right)^u}$和${\left( {\tilde \tau } \right)^u}$代入更新${\bar {\boldsymbol{O}}^m}$,
         ${\eta ^m} = {\eta ^{m - 1}},{{\boldsymbol{\varLambda}} ^m} = {{\boldsymbol{\varLambda}} ^{m - 1}} + \dfrac{1}{\eta }{\bar {\boldsymbol{O}}^m}$;
     (10) else
     (11)   ${{\boldsymbol{\varLambda}} ^m} = {{\boldsymbol{\varLambda}} ^{m - 1}},{\eta ^m} = d{\eta ^{m - 1}}$;
     (12) 設(shè)置迭代次數(shù)$m = m + 1$,更新$h\left( {{\nu ^m}} \right) = {\left\| {{{\bar {\boldsymbol{O}}}^m}} \right\|_\infty }$;
     (13) End while
    下載: 導(dǎo)出CSV
  • [1] WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [2] BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [3] LIU Yuanwei, MU Xidong, LIU Xiao, et al. Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS[J]. IEEE Wireless Communications, 2022, 29(2): 169–176. doi: 10.1109/MWC.102.2100363.
    [4] 張?jiān)阼? 江浩. 智能超表面使能無(wú)人機(jī)高能效通信信道建模與傳輸機(jī)理分析[J]. 電子學(xué)報(bào), 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [5] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels[J]. IEEE Transactions on Communications, 2023, 71(7): 4247–4261. doi: 10.1109/TCOMM.2023.3266832.
    [6] GUO Yuan, LIU Yang, WU Qingqing, et al. Joint beamforming for RIS aided full-duplex integrated sensing and uplink communication[C]. The IEEE International Conference on Communications, Rome, Italy, 2023: 4249–4254. doi: 10.1109/ICC45041.2023.10279303.
    [7] XU Jiaqi, LIU Yuanwei, MU Xidong, et al. STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2021, 25(9): 3134–3138. doi: 10.1109/LCOMM.2021.3082214.
    [8] WANG Zhaolin, MU Xidong, XU Jiaqi, et al. Simultaneously transmitting and reflecting surface (STARS) for terahertz communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 861–877. doi: 10.1109/JSTSP.2023.3279621.
    [9] CHEN Jiagao and YU Xiangbin. Ergodic rate analysis and phase design of STAR-RIS aided NOMA with statistical CSI[J]. IEEE Communications Letters, 2022, 26(12): 2889–2893. doi: 10.1109/LCOMM.2022.3202346.
    [10] WANG Yufei, YANG Zheng, CUI Jingjing, et al. Optimizing the fairness of STAR-RIS and NOMA assisted integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5895–5907. doi: 10.1109/TWC.2023.3328872.
    [11] LIU Zhenrong, LI Zongze, WEN Miaowen, et al. STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients[J]. IEEE Transactions on Communications, 2023, 71(7): 4313–4327. doi: 10.1109/TCOMM.2023.3274137.
    [12] LI Haochen, WANG Zhaolin, MU Xidong, et al. Near-field integrated sensing, positioning, and communication: A downlink and uplink framework[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2196–2212. doi: 10.1109/JSAC.2024.3413956.
    [13] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Hybrid far-and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8290–8303. doi: 10.1109/TWC.2023.3262063.
    [14] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [15] WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
    [16] SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [17] SHI Qingjiang and HONG Mingyi. Penalty dual decomposition method for nonsmooth nonconvex optimization—Part I: Algorithms and convergence analysis[J]. IEEE Transactions on Signal Processing, 2020, 68: 4108–4122. doi: 10.1109/TSP.2020.3001906.
    [18] LUO Zhiquan, MA W, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [19] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
    [20] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  356
  • HTML全文瀏覽量:  107
  • PDF下載量:  69
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-09-06
  • 網(wǎng)絡(luò)出版日期:  2024-09-28
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回