利用伯努利濾波的多目標(biāo)機(jī)動(dòng)雷達(dá)誤差配準(zhǔn)方法
doi: 10.11999/JEIT240013
-
1.
桂林電子科技大學(xué)信息與通信學(xué)院 桂林 541004
-
2.
桂林電子科技大學(xué)廣西精密導(dǎo)航技術(shù)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室 桂林 541004
-
3.
桂林電子科技大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院 桂林 541004
-
4.
衛(wèi)星導(dǎo)航定位與位置服務(wù)國(guó)家地方聯(lián)合工程研究中心 桂林 541004
-
5.
南寧桂電電子科技研究院有限公司 南寧 530031
Mobile Radar Registration with Multiple Targets Based on Bernoulli Filter
-
1.
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
-
2.
Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Science and Technology, Guilin 541004, China
-
3.
School of Mathematics and Computing Science, Guilin University of Electronic Science and Technology, Guilin 541004, China
-
4.
National & Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service, Guilin 541004, China
-
5.
GUET-Nanning E-Tech Research Institute Co., Ltd., Nanning 530031, China
-
摘要: 傳統(tǒng)的組網(wǎng)雷達(dá)多目標(biāo)誤差配準(zhǔn)方法通常假設(shè)數(shù)據(jù)關(guān)聯(lián)關(guān)系已知,但在平臺(tái)機(jī)動(dòng)的情況下,系統(tǒng)同時(shí)存在雷達(dá)測(cè)量偏差和平臺(tái)姿態(tài)角偏差,且雷達(dá)觀測(cè)過程中會(huì)受到雜波干擾,導(dǎo)致數(shù)據(jù)關(guān)聯(lián)尤為困難。針對(duì)這一問題,該文提出一種基于伯努利濾波的多目標(biāo)機(jī)動(dòng)雷達(dá)誤差配準(zhǔn)方法。首先建立系統(tǒng)偏差的量測(cè)與狀態(tài)方程,然后將系統(tǒng)偏差建模成伯努利隨機(jī)有限集,利用公共坐標(biāo)系下的原始量測(cè)可實(shí)現(xiàn)系統(tǒng)偏差在伯努利濾波框架下的遞推估計(jì),有效避免了數(shù)據(jù)關(guān)聯(lián)問題。同時(shí),為了充分利用多目標(biāo)量測(cè)信息,提出一種修正的貪婪量測(cè)劃分方法,在每個(gè)濾波時(shí)刻挑選出系統(tǒng)偏差對(duì)應(yīng)的最優(yōu)量測(cè)子集,利用量測(cè)子集中的多量測(cè)信息實(shí)現(xiàn)系統(tǒng)偏差的集中式融合估計(jì),提高了系統(tǒng)偏差的估計(jì)精度和收斂速度。仿真實(shí)驗(yàn)表明,所提方法能夠在數(shù)據(jù)關(guān)聯(lián)未知的多目標(biāo)多雜波場(chǎng)景下對(duì)雷達(dá)測(cè)量偏差和平臺(tái)姿態(tài)角偏差進(jìn)行有效估計(jì),在平臺(tái)姿態(tài)角變化率較低時(shí),所提方法具有較強(qiáng)的適應(yīng)性。
-
關(guān)鍵詞:
- 誤差配準(zhǔn) /
- 數(shù)據(jù)關(guān)聯(lián) /
- 伯努利濾波 /
- 集中式融合 /
- 量測(cè)劃分
Abstract: Traditional methods for multi-target bias registration in networked radar system typically assume that the data association relationship is known. However, in the case of platform maneuvering, there are simultaneously radar measurement biases and platform attitude angle biases, and the radar observation process is prone to clutter interference, resulting in difficulties in data association. To address this issue, a multi-target mobile radar bias registration method based on Bernoulli filter is proposed. Firstly, the measurement and state equations for the system biases are established, and then the system biases are modeled as a Bernoulli random finite set. The recursive estimation of the system biases under the Bernoulli filtering framework is achieved using the original measurements in a common coordinate system, effectively avoiding the data association. Additionally, to fully utilize multi-target measurement information, a modified greedy measurement partitioning method is proposed to select the optimal measurement subset corresponding to the system biases at each filtering time step, and the centralized fusion estimation of the system biases is performed using the multi-measurement information in the measurement subset, improving the estimation accuracy and convergence speed of the system biases. Simulation experiments show that the proposed method can effectively estimate radar measurement biases and platform attitude angle biases in multi-target and cluttered scenarios with unknown data association. Moreover, this method demonstrates strong adaptability when the platform attitude angle variation rate is low.-
Key words:
- Registration /
- Data association /
- Bernoulli filter /
- Centralized fusion /
- Measurement partition
-
表 1 場(chǎng)景3中偏差收斂步數(shù)比較
量測(cè)劃分
前/后偏差估計(jì)收斂步數(shù) 雷達(dá)測(cè)量偏差 平臺(tái)姿態(tài)角偏差 徑向距離 方位角 俯仰角 偏航角 縱搖角 橫搖角 前 161 330 288 362 317 305 后 18 281 194 310 260 242 下載: 導(dǎo)出CSV
表 2 場(chǎng)景3中偏差估計(jì)精度比較(%)
量測(cè)劃分
前/后偏差估計(jì)精度 雷達(dá)測(cè)量偏差 平臺(tái)姿態(tài)角偏差 徑向距離 方位角 俯仰角 偏航角 縱搖角 橫搖角 前 98.43 96.52 90.33 93.25 93.34 92.14 后 98.66 98.18 95.04 97.31 96.71 96.53 下載: 導(dǎo)出CSV
-
[1] 何友, 修建娟, 關(guān)欣, 等. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 3版. 北京: 電子工業(yè)出版社, 2013: 335–340.HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2013: 335–340. [2] 曾雅俊, 王俊, 魏少明, 等. 分布式多傳感器多目標(biāo)跟蹤方法綜述[J]. 雷達(dá)學(xué)報(bào), 2023, 12(1): 197–213. doi: 10.12000/JR22111.ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111. [3] 吳怡. 雷達(dá)組網(wǎng)誤差配準(zhǔn)與目標(biāo)跟蹤算法研究[D]. [碩士論文], 上海交通大學(xué), 2020. doi: 10.27307/d.cnki.gsjtu.2020.001046.WU Yi. Research on radar network error registration and target tracking algorithm[D]. [Master dissertation], Shanghai Jiao Tong University, 2020. doi: 10.27307/d.cnki.gsjtu.2020.001046. [4] ZHOU Yifeng, LEUNG H, and BLANCHETTE M. Sensor alignment with Earth-centered Earth-fixed (ECEF) coordinate system[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 410–418. doi: 10.1109/7.766925. [5] 董云龍, 何友, 王國(guó)宏, 等. 基于ECEF的廣義最小二乘誤差配準(zhǔn)技術(shù)[J]. 航空學(xué)報(bào), 2006, 27(3): 463–467. doi: 10.3321/j.issn:1000-6893.2006.03.023.DONG Yunlong, HE You, WANG Guohong, et al. Generalized least squares registration algorithm with Earth-Centered Earth-Fixed (ECEF) coordinate system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 463–467. doi: 10.3321/j.issn:1000-6893.2006.03.023. [6] 董云龍, 張焱. 基于漸消因子的ECEF-GLS估計(jì)算法[J]. 系統(tǒng)工程與電子技術(shù), 2024, 46(1): 137–142. doi: 10.12305/j.issn.1001-506X.2024.01.16.DONG Yunlong and ZHANG Yan. ECEF-GLS estimation algorithm based on fading factor[J]. Systems Engineering and Electronics, 2024, 46(1): 137–142. doi: 10.12305/j.issn.1001-506X.2024.01.16. [7] 熊偉, 邢鳳勇, 潘旭東, 等. 基于合作目標(biāo)的動(dòng)平臺(tái)傳感器偏差估計(jì)方法[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(3): 544–547. doi: 10.3969/j.issn.1001-506X.2011.03.15.XIONG Wei, XING Fengyong, PAN Xudong, et al. Bias estimation for moving sensors network using cooperation targets[J]. Systems Engineering and Electronics, 2011, 33(3): 544–547. doi: 10.3969/j.issn.1001-506X.2011.03.15. [8] LU Chenyang, WANG Xiaorui, and KOUTSOUKOS X. Feedback utilization control in distributed real-time systems with end-to-end tasks[J]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(6): 550–561. doi: 10.1109/TPDS.2005.73. [9] OKELLO N and RISTIC B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1074–1083. doi: 10.1109/TAES.2003.1238759. [10] 崔亞奇, 熊偉, 何友. 基于MLR的機(jī)動(dòng)平臺(tái)傳感器誤差配準(zhǔn)算法[J]. 航空學(xué)報(bào), 2012, 33(1): 118–128.CUI Yaqi, XIONG Wei, and HE You. Mobile platform sensor registration algorithm based on MLR[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 118–128. [11] WANG Jun, MA Shuheng, ZHANG Yuxi, et al. EMLR for multiple radars on a mobile platform[J]. The Journal of Engineering, 2019, 2019(20): 6494–6498. doi: 10.1049/joe.2019.0190. [12] WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533. [13] LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Exact multisensor dynamic bias estimation with local tracks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 576–590. doi: 10.1109/TAES.2004.1310006. [14] LI W, LEUNG H, and ZHOU Yifeng. Space-time registration of radar and ESM using unscented Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 824–836. doi: 10.1109/TAES.2004.1337457. [15] CHEN Lei, WANG Guohong, HE You, et al. Analysis of mobile 3-D radar error registration when radar sways with platform[J]. Journal of Navigation, 2014, 67(3): 451–472. doi: 10.1017/s0373463313000799. [16] XIU Jianjuan, DONG Kai, and WANG Meng. System error real-time estimation of radar network based on iterative generalized least squares[C]. The 5th International Conference on Information Communication and Signal Processing, Shenzhen, China, 2022: 1–5. doi: 10.1109/ICICSP55539.2022.10050601. [17] LIAN Feng, HAN Cuiming, LIU Weifeng, et al. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 441–448. doi: 10.1049/iet-rsn.2010.0057. [18] LI Minzhe, JING Zhongliang, PAN Han, et al. Joint registration and multi-target tracking based on labelled random finite set and expectation maximisation[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 312–322. doi: 10.1049/iet-rsn.2017.0137. [19] 章濤, 李海, 吳仁彪. 基于概率假設(shè)密度濾波的多目標(biāo)雷達(dá)空間誤差配準(zhǔn)算法[J]. 控制與決策, 2018, 33(8): 1429–1435. doi: 10.13195/j.kzyjc.2017.0506.ZHANG Tao, LI Hai, and WU Renbiao. Radar spatial registration with multiple targets based on probability hypothesis density filter[J]. Control and Decision, 2018, 33(8): 1429–1435. doi: 10.13195/j.kzyjc.2017.0506. [20] RISTIC B, VO B T, VO B N, et al. A tutorial on Bernoulli filters: Theory, implementation and applications[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3406–3430. doi: 10.1109/TSP.2013.2257765. [21] SAUCAN A A, COATES M J, and RABBAT M. A. A multisensor multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2017, 65(20): 5495–5509. doi: 10.1109/TSP.2017.2723348. [22] 蔡如華, 樊向婷, 吳孫勇, 等. 基于交互式CPHD的多傳感器多機(jī)動(dòng)目標(biāo)跟蹤[J]. 控制與決策, 2022, 37(1): 47–57. doi: 10.13195/j.kzyjc.2020.0983.CAI Ruhua, FAN Xiangting, WU Sunyong, et al. Multi-sensor and multi-maneuver target tracking based on interactive CPHD[J]. Control and Decision, 2022, 37(1): 47–57. doi: 10.13195/j.kzyjc.2020.0983. -