一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

通信感知一體化硬件設(shè)計——現(xiàn)狀與展望

林粵偉 張奇勛 尉志青 李興旺 劉凡 范紹帥 王溢

林粵偉, 張奇勛, 尉志青, 李興旺, 劉凡, 范紹帥, 王溢. 通信感知一體化硬件設(shè)計——現(xiàn)狀與展望[J]. 電子與信息學(xué)報, 2025, 47(1): 1-21. doi: 10.11999/JEIT240012
引用本文: 林粵偉, 張奇勛, 尉志青, 李興旺, 劉凡, 范紹帥, 王溢. 通信感知一體化硬件設(shè)計——現(xiàn)狀與展望[J]. 電子與信息學(xué)報, 2025, 47(1): 1-21. doi: 10.11999/JEIT240012
LIN Yuewei, ZHANG Qixun, WEI Zhiqing, LI Xingwang, LIU Fan, FAN Shaoshuai, WANG Yi. Status and Prospect of Hardware Design on Integrated Sensing and Communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 1-21. doi: 10.11999/JEIT240012
Citation: LIN Yuewei, ZHANG Qixun, WEI Zhiqing, LI Xingwang, LIU Fan, FAN Shaoshuai, WANG Yi. Status and Prospect of Hardware Design on Integrated Sensing and Communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 1-21. doi: 10.11999/JEIT240012

通信感知一體化硬件設(shè)計——現(xiàn)狀與展望

doi: 10.11999/JEIT240012
基金項目: 國家自然科學(xué)基金優(yōu)秀青年科學(xué)基金(62022020),國家重點(diǎn)研發(fā)計劃(2020YFA0711302),網(wǎng)絡(luò)與交換技術(shù)全國重點(diǎn)實(shí)驗(yàn)室(北京郵電大學(xué))開放課題(SKLNST-2023-1-14),泛網(wǎng)無線通信教育部重點(diǎn)實(shí)驗(yàn)室(北京郵電大學(xué))開放課題,青島科技大學(xué)公派國內(nèi)訪學(xué)項目
詳細(xì)信息
    作者簡介:

    林粵偉:男,副教授、碩士生導(dǎo)師、博士,研究方向?yàn)橥ㄐ鸥兄惑w化、B5G/6G無線通信、FPGA嵌入式技術(shù)等

    張奇勛:男,教授,研究方向?yàn)橥ㄐ鸥兄惑w化等

    尉志青:男,副教授,研究方向?yàn)橥ㄐ鸥兄惑w化、無線資源管理與優(yōu)化等

    李興旺:男,副教授,研究方向?yàn)橥ㄐ鸥兄惑w化、RIS等

    劉凡:男,教授,研究方向?yàn)橥ㄐ鸥兄惑w化等

    范紹帥:男,副教授,研究方向?yàn)橥ㄐ鸥兄惑w化、無線通信、無線定位等

    王溢:男,博士,研究方向?yàn)橥ㄐ鸥兄惑w化等

    通訊作者:

    張奇勛 zhangqixun@bupt.edu.cn

  • 中圖分類號: TN911.1

Status and Prospect of Hardware Design on Integrated Sensing and Communication

Funds: The National Natural Science Foundation of China Excellent Youth Science Fund Project (62022020), The National Key R&D Program (2020YFA0711302), The Open Foundation of State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2023-1-14), The Open Foundation of Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education, P.R.China, The Public Domestic Visiting Program of Qingdao University of Science and Technology
  • 摘要: 通信感知一體化(ISAC)需要通信和感知共用無線電頻段和硬件資源。多頻段、大帶寬、通信感知對硬件的要求不同等特點(diǎn)對通信感知一體化硬件設(shè)計提出更高要求。該文對后5G, 6G, WiFi等通信感知一體化的硬件設(shè)計、驗(yàn)證技術(shù),以及硬件系統(tǒng)性驗(yàn)證平臺進(jìn)行歸納,對國內(nèi)外近年相關(guān)硬件設(shè)計研究及其驗(yàn)證情況進(jìn)行綜述,關(guān)注通信感知兩種系統(tǒng)對硬件的需求矛盾、帶內(nèi)全雙工(IBFD)自干擾消除(SIC)、功放(PA)效率、電路性能對建模要求更高等硬件設(shè)計挑戰(zhàn)。首先,總結(jié)、比較已有研究中通信感知一體化收發(fā)信機(jī)架構(gòu)設(shè)計。然后,介紹、分析現(xiàn)有通信感知一體化帶內(nèi)全雙工自干擾抑制方案、低峰均功率比(PAPR)波形與高性能PA設(shè)計、器件高精度建模方法以及硬件系統(tǒng)性驗(yàn)證平臺。最后,總結(jié)全文并對未來通信感知一體化硬件設(shè)計所面臨的開放性問題進(jìn)行展望。
  • 圖  1  論文結(jié)構(gòu)

    圖  2  傳統(tǒng)TDD收發(fā)信機(jī)架構(gòu)[34]

    圖  3  接收機(jī)通信與感知部分分離的架構(gòu)[36]

    圖  4  基于多端口干涉器的收發(fā)信機(jī)架構(gòu)[41]

    圖  5  通感一體化系統(tǒng)IBFD架構(gòu)[23]

    圖  6  IBFD收發(fā)信機(jī)架構(gòu)[46]

    圖  7  接收機(jī)通信與感知完全分離的架構(gòu)[21]

    圖  8  混頻器前置收發(fā)信機(jī)架構(gòu)[47,48]

    圖  9  LNA選擇性旁路收發(fā)信機(jī)架構(gòu)[49]

    圖  10  EBD電氣均衡雙工器自干擾抵消原理[50]

    表  1  通感一體化IBFD架構(gòu)性能對比

    文獻(xiàn) 頻點(diǎn)
    (GHz)
    帶寬
    (MHz)
    波形 感知性能 通信性能 收發(fā)信機(jī)
    隔離度(dB)
    [44,45] 1.74 40 IEEE 802.11 OFDM波形 在保持與另一通信節(jié)點(diǎn)的IBFD鏈路的同時,在室內(nèi)檢測20 m內(nèi)的目標(biāo),能夠?qū)λ俣葹?.2~1 m/s的運(yùn)動物體測速 誤碼率低于1.5% 大于85
    [46] 2.4 100 4G LTE與5G NR OFDM波形 可在室外對距離102.1 m、相對速度9 m/s的車輛進(jìn)行測距測速,可以取得1 m量級的距離估計精度和超過90%的目標(biāo)檢測概率 未提供 100
    下載: 導(dǎo)出CSV

    表  2  通感一體化收發(fā)信機(jī)架構(gòu)總結(jié)

    文獻(xiàn) 收發(fā)信機(jī)架構(gòu) 通信雙工方式 優(yōu)點(diǎn) 缺點(diǎn) 說明
    [3234] TDD架構(gòu):傳統(tǒng)無線電架構(gòu)(超外差、零中頻等) TDD 可直接復(fù)用已有架構(gòu) 存在雷達(dá)感知最小距離問題,通信和雷達(dá)對收發(fā)信機(jī)要求不同導(dǎo)致一體化功能實(shí)現(xiàn)較為困難
    [35,36] TDD架構(gòu):接收機(jī)通信感知鏈路部分分離 TDD 保持接收機(jī)靈敏度,節(jié)省ADC 接收機(jī)額外增加感知鏈路,體積、重量增大 接收機(jī)天線、射頻、大部分中頻鏈路分離,時分復(fù)用
    基帶鏈路
    [42] TDD架構(gòu):接收機(jī)基于多端口干涉器 TDD 便于估計AOA、簡單易實(shí)現(xiàn)、低成本、極低功耗、可重配置 接收機(jī)靈敏度減小、動態(tài)范圍有限、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松)
    [23] IBFD架構(gòu) IBFD(接收機(jī)可持續(xù)接收信號) 通信頻譜利用率提升接近2倍、無雷達(dá)感知最小距離問題 收發(fā)天線互耦、自干擾抑制帶來接收機(jī)計算資源消耗與硬件復(fù)雜度的增大 學(xué)術(shù)研究與未來產(chǎn)業(yè)落地的理想終極方案
    [16] 折中架構(gòu):接收機(jī)通信感知鏈路完全分離 TDD(接收機(jī)中的感知鏈路可持續(xù)接收信號) 避免自干擾、工程易實(shí)現(xiàn)、無雷達(dá)感知最小距離問題 接收機(jī)額外增加感知鏈路,體積、重量增大 學(xué)術(shù)研究與目前產(chǎn)業(yè)測試的折中過渡方案
    [47,48] 高頻段架構(gòu):接收機(jī)混頻器前置 TDD 緩解接收機(jī)飽和問題、面積與功耗減小、無雷達(dá)感知最小距離問題 接收機(jī)噪聲系數(shù)增大、靈敏度減小、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松)
    [49] 高頻段架構(gòu):接收機(jī)LNA選擇性旁路 TDD 緩解接收機(jī)飽和問題、面積與功耗減小、無雷達(dá)感知最小距離問題 接收機(jī)噪聲系數(shù)增大、雷達(dá)靈敏度減小、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松),發(fā)射信號時旁路
    下載: 導(dǎo)出CSV

    表  3  通感一體化部分代表性硬件驗(yàn)證平臺

    文獻(xiàn) 頻點(diǎn)、帶寬 波形 感知驗(yàn)證情況 通信驗(yàn)證情況 特點(diǎn)或局限性
    [46] 2.4 GHz,
    40 MHz
    OFDM 5G BS端下行鏈路室外靜止無人機(jī)測距(距離
    40 m),室外多車輛測距、測速(距離50~
    110 m,速度12 m/s、±9 m/s)。
    IBFD架構(gòu),自干擾消除方法設(shè)計
    [70,71] 24 GHz,
    93.1 MHz
    OFDM 室外實(shí)際路況多車輛測距(100 m以內(nèi))、
    測速(–5 m/s,–12 m/s)。
    面向車聯(lián)網(wǎng)、自動駕駛場景
    [29] 3.5 GHz,
    10 MHz
    LFM 模糊函數(shù)性能較好。 比特率1 Mbit/s,定向通信,給出QPSK星座圖
    (誤碼率較好)
    雷達(dá)通信一體化波形首次得到硬件技術(shù)驗(yàn)證[24]
    [75] 73 GHz,
    2 GHz
    OFDM 毫米波室內(nèi)外靜止目標(biāo)測距(4 m內(nèi))、
    測角、不支持測速。
    單工通信 毫米波高頻段,受制于SIMO機(jī)械模擬的慢速,只能對靜止目標(biāo)測距、測角
    [94,95] 3.5 GHz,
    18 MHz
    OFDM 使用NI公司5G大規(guī)模MIMO實(shí)驗(yàn)平臺驗(yàn)證近場室內(nèi)移動物體厘米級定位。 - 只是初步探究感知功能在未來集成到大規(guī)模MIMO通信系統(tǒng)中的技術(shù)可行性,沒有進(jìn)行通信功能與性能測試
    [78,81,85] 28 GHz,
    800 MHz
    OFDM 通感算一體化:5G毫米波室內(nèi)多車協(xié)同定位,測距0.9 m,精度0.044 m。 2.8 Gbit/s 面向車聯(lián)網(wǎng)、自動駕駛場景的多站協(xié)同感知;TDD架構(gòu)
    [81] 27.5 GHz OFDM 車輛測距、測速、測角。 視頻傳輸 面向車聯(lián)網(wǎng)、自動駕駛場景的單站感知
    [86,87] 5.4 GHz,
    560 MHz
    STC-OFDM-Chirp 固定翼飛機(jī)機(jī)載8 km高空對地SAR成像,
    分辨率0.3 m×0.3 m。
    傳輸圖像,誤碼率較高(未加信道編碼) 時空域多維度多波束一體化波形調(diào)制;
    固定翼飛機(jī)SAR成像
    [93] 26 GHz,
    100 MHz
    CP-OFDM 室外5G基站車輛、無人機(jī)感知:測距500 m
    以上;車輛測速精度小于0.1 km/h
    (車速30 km/h)、測角精度小于0.2o
    - 基于5G現(xiàn)網(wǎng)的通感一體化驗(yàn)證
    [96] 140 GHz,
    8 GHz
    OFDM, FMCW 大規(guī)模MIMO太赫茲毫米級不可
    見物體3維成像。
    - 只是初步探究太赫茲感知集成到大規(guī)模MIMO通信的可行性
    下載: 導(dǎo)出CSV
  • [1] 孟凡軍, 鄧炳光, 秦啟航, 等. 5G NR小區(qū)搜索中一種頻域相關(guān)快速同步算法[J]. 電訊技術(shù), 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008.

    MENG Fanjun, DENG Bingguang, QIN Qihang, et al. A fast synchronization algorithm based on frequency domain correlation in 5G NR cell search[J]. Telecommunication Engineering, 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008.
    [2] 韓松岳, 苗愷, 李勇, 等. 區(qū)塊鏈與5G MEC在軍事領(lǐng)域的融合應(yīng)用[J]. 海軍航空大學(xué)學(xué)報, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002.

    HAN Songyue, MIAO Kai, LI Yong, et al. Integration application of blockchain and 5G MEC in military field[J]. Journal of Naval Aviation University, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002.
    [3] IMT-2030(6G)推進(jìn)組. 6G網(wǎng)絡(luò)架構(gòu)愿景與關(guān)鍵技術(shù)展望白皮書[R]. 2021.

    IMT-2030(6G) Promotion Group. 6G network architecture vision and key technology outlook white paper[R]. 2021.
    [4] 胡圣波, 朱滿琴, 楊露露, 等. 未來無線通信與大數(shù)據(jù)、人工智能[J]. 貴州師范大學(xué)學(xué)報: 自然科學(xué)版, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001.

    HU Shengbo, ZHU Manqin, YANG Lulu, et al. Future wireless communication, big data and AI[J]. Journal of Guizhou Normal University: Natural Sciences, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001.
    [5] 王朝煒, 王天宇, 劉婷, 等. 6G車聯(lián)網(wǎng)中基于路側(cè)設(shè)備部署優(yōu)化的機(jī)會式數(shù)據(jù)卸載[J]. 無線電工程, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001.

    WANG Chaowei, WANG Tianyu, LIU Ting, et al. Opportunistic data offloading based on RSU deployment optimization in 6G internet of vehicle[J]. Radio Engineering, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001.
    [6] 肖沈陽, 金志剛, 蘇毅珊, 等. 一種優(yōu)化的gOMP稀疏OFDM信道估計方法[J]. 工程科學(xué)與技術(shù), 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000.

    XIAO Shenyang, JIN Zhigang, SU Yishan, et al. An optimized gOMP algorithm for sparse OFDM channel estimation[J]. Advanced Engineering Sciences, 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000.
    [7] 龐立華, 吳文捷, 張陽, 等. 多小區(qū)Massive MIMO系統(tǒng)的分布式導(dǎo)頻優(yōu)化分配[J]. 西安科技大學(xué)學(xué)報, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224.

    PANG Lihua, WU Wenjie, ZHANG Yang, et al. Distributed pilot optimizing assignment in multi-cell Massive MIMO systems[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224.
    [8] IMT-2030(6G)推進(jìn)組. 通信感知一體化技術(shù)研究報告[R]. 2021.

    IMT-2030(6G) Promotion Group. Research report on integration of sensing and communication technology[R]. 2021.
    [9] HUANG Yuhong. Challenges and opportunities of sub-6 GHz integrated sensing and communications for 5G-Advanced and beyond[J]. Chinese Journal of Electronics, 2024, 33(2): 323–325. doi: 10.23919/cje.2023.00.251.
    [10] 閆實(shí), 彭木根, 王文博. 通信感知計算融合: 6G愿景與關(guān)鍵技術(shù)[J]. 北京郵電大學(xué)學(xué)報, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.

    YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
    [11] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [12] 尉志青, 馮志勇, 李怡恒, 等. 太赫茲通信感知一體化波形: 現(xiàn)狀與展望[J]. 通信學(xué)報, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.

    WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
    [13] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
    [14] 余顯斌, 呂治東, 李漣漪, 等. 太赫茲感知通信一體化波形設(shè)計與信號處理[J]. 通信學(xué)報, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015.

    YU Xianbin, LYU Zhidong, LI Lianyi, et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015.
    [15] 林粵偉, 王溢, 張奇勛, 等. 面向6G的通信感知一體化車聯(lián)網(wǎng)研究綜述[J]. 信號處理, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.

    LIN Yuewei, WANG Yi, ZHANG Qixun, et al. Overview of the research on 6G oriented internet of vehicles for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.
    [16] 馬忠貴, 李卓, 梁彥鵬. 自動駕駛車聯(lián)網(wǎng)中通感算融合研究綜述與展望[J]. 工程科學(xué)學(xué)報, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003.

    MA Zhonggui, LI Zhuo, and LIANG Yanpeng. Overview and prospect of communication-sensing-computing integration for autonomous driving in the Internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003.
    [17] 劉鑫, 王忠, 秦明星. 多機(jī)器人協(xié)同SLAM技術(shù)研究進(jìn)展[J]. 計算機(jī)工程, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504.

    LIU Xin, WANG Zhong, and QIN Mingxing. Research progress of multi-robot collaborative SLAM technology[J]. Computer Engineering, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504.
    [18] 王紅星, 徐婉琳, 張勃陽. 一種基于改進(jìn)ORB和PROSAC特征點(diǎn)匹配的V-SLAM算法[J]. 河南理工大學(xué)學(xué)報: 自然科學(xué)版, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137.

    WANG Hongxing, XU Wanlin, and ZHANG Boyang. V-SLAM algorithm based on improved ORB and PROSAC feature point matching[J]. Journal of Henan Polytechnic University: Natural Science, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137.
    [19] 譚運(yùn)馨, 黃海風(fēng), 賴濤, 等. 基于GPU的長軌SAR實(shí)時成像算法[J]. 數(shù)據(jù)采集與處理, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013.

    TAN Yunxin, HUANG Haifeng, LAI Tao, et al. GPU-based real-time imaging algorithm for long-track SAR[J]. Journal of Data Acquisition and Processing, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013.
    [20] 劉帥奇, 雷鈺, 龐姣, 等. 基于生成對抗網(wǎng)絡(luò)的SAR圖像去噪[J]. 河北大學(xué)學(xué)報: 自然科學(xué)版, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013.

    LIU Shuaiqi, LEI Yu, PANG Jiao, et al. SAR image denoising based on generative adversarial networks[J]. Journal of Hebei University: Natural Science Edition, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013.
    [21] 劉光毅, 樓夢婷, 王啟星, 等. 面向6G的通信感知一體化架構(gòu)與關(guān)鍵技術(shù)[J]. 移動通信, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002.

    LIU Guangyi, LOU Mengting, WANG Qixing, et al. Towards 6G: Research on integrated sensing and communication architecture and key technology[J]. Mobile Communications, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002.
    [22] 葉威, 高樹亮. 面向5.5G的通信感知一體化[J]. 信息通信技術(shù), 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005.

    YE Wei and GAO Shuliang. Integrated sensing and communication towards 5.5G[J]. Information and Communications Technologies, 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005.
    [23] HASSANI S A, PARASHAR K, BOURDOUX A, et al. Doppler radar with in-band full duplex radios[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 1945–1953. doi: 10.1109/INFOCOM.2019.8737408.
    [24] 劉凡, 袁偉杰, 原進(jìn)宏, 等. 雷達(dá)通信頻譜共享及一體化: 綜述與展望[J]. 雷達(dá)學(xué)報, 2021, 10(3): 467–484. doi: 10.12000/JR20113.

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
    [25] 郝躍星. 恒包絡(luò)OFDM雷達(dá)通信一體化關(guān)鍵技術(shù)研究[D]. [碩士論文], 西安電子科技大學(xué), 2017.

    HAO Yuexing. Research on the key technology of constant envelop OFDM radar-communication integration[D]. [Master dissertation], Xidian University, 2017.
    [26] 張秋月, 張林讓, 谷亞彬, 等. 恒包絡(luò)OFDM雷達(dá)通信一體化信號設(shè)計[J]. 西安交通大學(xué)學(xué)報, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011.

    ZHANG Qiuyue, ZHANG Linrang, GU Yabin, et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi’an Jiaotong University, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011.
    [27] 肖博, 霍凱, 劉永祥. 雷達(dá)通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學(xué)報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
    [28] MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, part I: Theory[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690. doi: 10.1109/RADAR.2017.7944478.
    [29] MCCORMICK P M, RAVENSCROFT B, BLUNT S D, et al. Simultaneous radar and communication emissions from a common aperture, part II: Experimentation[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1697–1702. doi: 10.1109/RADAR.2017.7944480.
    [30] IMT-2030 (6G) 推進(jìn)組. 通信感知一體化技術(shù)研究報告[R]. 2版. 2022.

    IMT-2030 (6G) Promotion Group. Research report on integrated sensing and communication technology[R]. 2nd ed. 2022.
    [31] BOZORGI F, SEN P, BARRETO A N, et al. RF front-end challenges for joint communication and radar sensing[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376387.
    [32] HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. 7th IEEE European Radar Conference, Paris, France, 2010: 65–68.
    [33] HAN Liang and WU Ke. Emerging advances in transceiver technology fusion of wireless communication and radar sensing systems[C]. IEEE Asia-Pacific Microwave Conference, Melbourne, Australia, 2011: 951–954.
    [34] HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156.
    [35] MOGHADDASI J and WU Ke. Improved joint radar-radio (RadCom) transceiver for future intelligent transportation platforms and highly mobile high-speed communication systems[C]. IEEE International Wireless Symposium, Beijing, China, 2013: 1–4. doi: 10.1109/IEEE-IWS.2013.6616796.
    [36] MOGHADDASI J and WU Ke. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818–838. doi: 10.1109/ACCESS.2016.2530979.
    [37] ZHANG Hui, LI Lin, and WU Ke. 24GHz software-defined radar system for automotive applications[C]. IEEE European Conference on Wireless Technologies, Munich, Germany, 2007: 138–141. doi: 10.1109/ECWT.2007.4403965.
    [38] HAN Liang and WU Ke. 24-GHz joint radar and radio system capable of time-agile wireless sensing and communication[C]. IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011: 1–4. doi: 10.1109/MWSYM.2011.5972832.
    [39] HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. doi: 10.1109/TMTT.2011.2179552.
    [40] HAN Liang and WU Ke. Joint wireless communication and radar sensing systems–state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450.
    [41] MOGHADDASI J and WU Ke. Unified radar-communication (RadCom) multi-port interferometer transceiver[C]. IEEE European Radar Conference, Nuremberg, Germany, 2013: 479–482.
    [42] MOGHADDASI J and WU Ke. Millimeter-wave multifunction multiport interferometric receiver for future wireless systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1452–1466. doi: 10.1109/TMTT.2017.2772927.
    [43] HASSANI S A, GUEVARA A, PARASHAR K, et al. An in-band full-duplex transceiver for simultaneous communication and environmental sensing[C]. IEEE 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 1389–1394. doi: 10.1109/ACSSC.2018.8645165.
    [44] HASSANI S A, LAMPU V, PARASHAR K, et al. In-band full-duplex radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 1086–1097. doi: 10.1109/JSYST.2020.2992689.
    [45] HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Joint in-band full-duplex communication and radar processing[J]. IEEE Systems Journal, 2022, 16(2): 3391–3399. doi: 10.1109/JSYST.2021.3091383.
    [46] BARNETO C B, RIIHONEN T, TURUNEN M, et al. Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4042–4054. doi: 10.1109/TMTT.2019.2930510.
    [47] IOTTI L, KRISHNAMURTHY S, LACAILLE G, et al. A low-power 70-100-GHz mixer-first RX leveraging frequency-translational feedback[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2043–2054. doi: 10.1109/JSSC.2020.2991541.
    [48] MOSTAJERAN A, CATHELIN A, and AFSHARI E. A 170-GHz fully integrated single-chip FMCW imaging radar with 3-D imaging capability[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2721–2734. doi: 10.1109/JSSC.2017.2725963.
    [49] BARNETO C B, TURUNEN M, LIYANAARACHCHI S D, et al. High-accuracy radio sensing in 5G new radio networks: Prospects and self-interference challenge[C]. IEEE 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 1159–1163. doi: 10.1109/IEEECONF44664.2019.9048786.
    [50] VAN LIEMPD B, HERSHBERG B, ARIUMI S, et al. A +70-dBm IIP3 electrical-balance duplexer for highly integrated tunable front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(12): 4274–4286. doi: 10.1109/TMTT.2016.2613039.
    [51] MIKHAEL M, VAN LIEMPD B, CRANINCKX J, et al. An in-band full-duplex transceiver prototype with an in-system automated tuning for RF self-interference cancellation[C]. 1st IEEE International Conference on 5G for Ubiquitous Connectivity, Akaslompolo, Finland, 2014: 110–115. doi: 10.4108/icst.5gu.2014.258118.
    [52] VERMEULEN T, VAN LIEMPD B, HERSHBERG B, et al. Real-time RF self-interference cancellation for in-band full duplex[C]. IEEE International Symposium on Dynamic Spectrum Access Networks, Stockholm, Sweden, 2015: 275–276. doi: 10.1109/DySPAN.2015.7343915.
    [53] 徐誠, 郭進(jìn)陽, 李超, 等. 使用HLS開發(fā)FPGA異構(gòu)加速系統(tǒng): 問題、優(yōu)化方法和機(jī)遇[J]. 計算機(jī)科學(xué)與探索, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102.

    XU Cheng, GUO Jinyang, LI Chao, et al. Using HLS to develop FPGA heterogeneous acceleration system: Problems, optimization methods and opportunities[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102.
    [54] 吳宇航, 何軍. 基于FPGA的人體行為識別系統(tǒng)的設(shè)計[J]. 南京信息工程大學(xué)學(xué)報: 自然科學(xué)版, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009.

    WU Yuhang and HE Jun. Design of human activity recognition system based on FPGA[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009.
    [55] HUUSARI T, CHOI Y S, LIIKKANEN P, et al. Wideband self-adaptive RF cancellation circuit for full-duplex radio: Operating principle and measurements[C]. IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015: 1–7. doi: 10.1109/VTCSpring.2015.7146163.
    [56] HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Adaptive filter design for simultaneous in-band full-duplex communication and radar[C]. IEEE 17th European Radar Conference, Utrecht, Netherlands, 2021: 5–8. doi: 10.1109/EuRAD48048.2021.00013.
    [57] HU Xiaoyan, MASOUROS C, LIU Fan, et al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548.
    [58] 任樂. 毫米波寬帶混頻與固態(tài)合成功放及線性化技術(shù)研究[D]. [博士論文], 東南大學(xué), 2022. doi: 10.27014/d.cnki.gdnau.2022.000237.

    REN Le. Research on techniques of millimeter wave broadband mixing and solid-state power combined amplifier and linearization[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.000237.
    [59] GAVELL M, GRANSTROM G, FAGER C, et al. An E-band analog predistorter and power amplifier MMIC chipset[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(1): 31–33. doi: 10.1109/LMWC.2017.2768519.
    [60] DORVAL R, GRAY R, and KATZ A. A versatile wideband linearizer/driver amplifier for use with multiple millimeter-wave TWTAs[C]. IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, Orlando, USA, 2019: 1–3. doi: 10.1109/PAWR.2019.8708717.
    [61] CHO G, PARK J, and HONG S. A 25.5-dB peak gain F-band power amplifier with an adaptive built-in linearizer[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 106–108. doi: 10.1109/LMWC.2019.2954217.
    [62] OTHMANI M, BOULEJFEN N, BRIHUEGA A, et al. Delta-Sigma modulator-embedded digital predistortion for 5G transmitter linearization[J]. IEEE Transactions on Communications, 2022, 70(8): 5558–5571. doi: 10.1109/TCOMM.2022.3184167.
    [63] MOSALAM H, XIAO Wenbo, GUI Xiaoyan, et al. A 54–68 GHz power amplifier with improved linearity and efficiency in 40 nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(1): 40–44. doi: 10.1109/TCSII.2021.3084628.
    [64] MA Zonglin, MA Kaixue, WANG Keping, et al. A 28GHz compact 3-way transformer-based parallel-series Doherty power amplifier with 20.4%/14.2% PAE at 6-/12-dB power back-off and 25.5dBm PSAT in 55nm bulk CMOS[C]. IEEE International Solid-State Circuits Conference, San Francisco, USA, 2022: 320–322. doi: 10.1109/ISSCC42614.2022.9731564.
    [65] 于飛. 毫米波線性化器研究[D]. [碩士論文], 電子科技大學(xué), 2020. doi: 10.27005/d.cnki.gdzku.2020.001942.

    YU Fei. Research of millimeter wave linearizer[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.001942.
    [66] 張凈植, 余益明, 吳韻秋, 等. 硅基毫米波集成電路設(shè)計發(fā)展現(xiàn)狀與挑戰(zhàn)[J]. 中國科學(xué): 信息科學(xué), 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334.

    ZHANG Jingzhi, YU Yiming, WU Yunqiu, et al. Developments and challenges of mm-Wave integrated circuits on silicon[J]. Scientia Sinica Informationis, 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334.
    [67] EISENSTADT W R and EO Y. S-parameter-based IC interconnect transmission line characterization[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(4): 483–490. doi: 10.1109/33.159877.
    [68] 魏震楠. 毫米波通信的功率放大器芯片及片上器件高精度建模研究[D]. [博士論文], 東南大學(xué), 2022. doi: 10.27014/d.cnki.gdnau.2022.003568.

    WEI Zhennan. Research on power amplifier and high-precision modeling of on-chip devices for millimeter-wave communications[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.003568.
    [69] TANG Zhidong, WANG Zewei, GUO Ao, et al. Cryogenic CMOS RF device modeling for scalable quantum computer design[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 532–539. doi: 10.1109/JEDS.2022.3186979.
    [70] STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. 69th IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5. doi: 10.1109/VETECS.2009.5073387.
    [71] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [72] BRAUN M, MüLLER M, FUHR M, et al. A USRP-based testbed for OFDM-based radar and communication systems[C]. Proceedings of 22nd Virginia Tech Symposium on Wireless Communications, Blacksburg, USA, 2012: 1–6.
    [73] MEALEY T C and DULY A J. BEEMER: A firmware-tuned, software-defined MIMO radar testbed[C]. IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–6. doi: 10.1109/ARRAY.2016.7832582.
    [74] RAVENSCROFT B, MCCORMICK P M, BLUNT S, et al. Experimental assessment of tandem-hopped radar and communications (THoRaCs)[C]. IEEE International Radar Conference, Toulon, France, 2019: 1–6. doi: 10.1109/RADAR41533.2019.171280.
    [75] KUMARI P, MEZGHANI A, and HEATH R W. JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar[J]. IEEE Open Journal of Vehicular Technology, 2021, 2: 218–234. doi: 10.1109/OJVT.2021.3069946.
    [76] BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220.
    [77] SANSON J B, CASTANHEIRA D, GAMEIRO A, et al. Non-orthogonal multicarrier waveform for radar with communications systems: 24 GHz GFDM RadCom[J]. IEEE Access, 2019, 7: 128694–128705. doi: 10.1109/ACCESS.2019.2940299.
    [78] ZHANG Qixun, SUN Huan, WEI Zhiqing, et al. Sensing and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 1278–1279. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162963.
    [79] ZHANG Qixun, LI Zhenhao, GAO Xinye, et al. Performance evaluation of radar and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, Vancouver, Canada, 2021: 1–2. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484463.
    [80] ZHANG Qixun, WANG Xinna, LI Zhenhao, et al. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1500–1514. doi: 10.1109/JSTSP.2021.3109666.
    [81] Online video[EB/OL]. https://www.chaspark.com/#/coffeeHours/media/809260877825687552.2023.1.
    [82] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
    [83] XU Tongyang, LIU Fan, MASOUROS C, et al. An experimental proof of concept for integrated sensing and communications waveform design[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1643–1655. doi: 10.1109/OJCOMS.2022.3209641.
    [84] ZHANG Qixun and GAO Xinye. Joint communication and sensing enabled cooperative perception testbed for connected automated vehicles[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops, New York, USA, 2022: 1–2. doi: 10.1109/INFOCOMWKSHPS54753.2022.9798074.
    [85] ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/JSAC.2022.3155506.
    [86] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne MIMO radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826.
    [87] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561.
    [88] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of airborne MIMO SAR system for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204113. doi: 10.1109/TGRS.2021.3066478.
    [89] 唐家政. 基于數(shù)據(jù)庫劃分的改進(jìn)WLAN室內(nèi)指紋定位研究[D]. [碩士論文], 南京郵電大學(xué), 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400.

    TANG Jiazheng. Research on improved WLAN indoor fingerprint location based on database partition[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400.
    [90] 高暢蔓. 基于CSI圖像特征的室內(nèi)定位技術(shù)[D]. [碩士論文], 南京郵電大學(xué), 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476.

    GAO Changman. CSI indoor location technology based on image features[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476.
    [91] LI Yang, WU Dan, ZHANG Jie, et al. DiverSense: Maximizing Wi-Fi sensing range leveraging signal diversity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(2): 94. doi: 10.1145/3536393.
    [92] WANG Guanhua, ZOU Yongpan, ZHOU Zimu, et al. We can hear you with Wi-Fi![C]. Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 593–604. doi: 10.1145/2639108.2639112.
    [93] 徐曉東, 李巖, 葉威, 等. 通信感知一體化應(yīng)用場景、關(guān)鍵技術(shù)和網(wǎng)絡(luò)架構(gòu)[J]. 移動通信, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001.

    XU Xiaodong, LI Yan, YE Wei, et al. Application scenarios, key technologies and network architecture of integrated sensing and communication[J]. Mobile Communications, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001.
    [94] SAKHNINI A, DE BAST S, GUENACH M, et al. Near-field coherent radar sensing using a massive MIMO communication testbed[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6256–6270. doi: 10.1109/TWC.2022.3148035.
    [95] SAKHNINI A, DE BAST S, GUENACH M, et al. An experimental evaluation of robust near-field radar localization using a massive MIMO testbed[C]. 2nd IEEE International Symposium on Joint Communications and Sensing, Seefeld, Austria, 2022: 1–6. doi: 10.1109/JCS54387.2022.9743499.
    [96] LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device[C]. IEEE Joint European Conference on Networks and Communications and 6G Summit, Porto, Portugal, 2021: 544–549. doi: 10.1109/EuCNC/6GSummit51104.2021.9482537.
    [97] TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324.
    [98] 張若愚, 袁偉杰, 崔原豪, 等. 面向6G的大規(guī)模MIMO通信感知一體化: 現(xiàn)狀與展望[J]. 移動通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.

    ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
    [99] 楊杰, 黃藝璇, 杜濤, 等. 通信感知一體化原型驗(yàn)證的研究現(xiàn)狀與發(fā)展趨勢[J]. 通信學(xué)報, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205.

    YANG Jie, HUANG Yixuan, DU Tao, et al. Prototype verification for integrated sensing and communications: Current status and development trends[J]. Journal on Communications, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205.
    [100] 王歡, 王陶冶, 商惠敏, 等. 基于ChatGPT的通用人工智能發(fā)展情況及對廣東的啟示[J]. 自動化與信息工程, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002.

    WANG Huan, WANG Taoye, SHANG Huimin, et al. The development of general artificial intelligence based on ChatGPT and its inspiration for Guangdong[J]. Automation & Information Engineering, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002.
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數(shù):  1491
  • HTML全文瀏覽量:  1064
  • PDF下載量:  334
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-05-03
  • 網(wǎng)絡(luò)出版日期:  2024-05-12
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回