通信感知一體化硬件設(shè)計——現(xiàn)狀與展望
doi: 10.11999/JEIT240012
-
1.
青島科技大學(xué)信息科學(xué)技術(shù)學(xué)院 青島 266061
-
2.
北京郵電大學(xué)網(wǎng)絡(luò)與交換技術(shù)全國重點(diǎn)實(shí)驗(yàn)室 北京 100876
-
3.
北京郵電大學(xué)泛網(wǎng)無線通信教育部重點(diǎn)實(shí)驗(yàn)室 北京 100876
-
4.
河南理工大學(xué)物理與電子信息學(xué)院 焦作 454003
-
5.
東南大學(xué)信息科學(xué)與工程學(xué)院 南京 210096
Status and Prospect of Hardware Design on Integrated Sensing and Communication
-
1.
College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
-
2.
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
3.
Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
4.
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
-
5.
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
-
摘要: 通信感知一體化(ISAC)需要通信和感知共用無線電頻段和硬件資源。多頻段、大帶寬、通信感知對硬件的要求不同等特點(diǎn)對通信感知一體化硬件設(shè)計提出更高要求。該文對后5G, 6G, WiFi等通信感知一體化的硬件設(shè)計、驗(yàn)證技術(shù),以及硬件系統(tǒng)性驗(yàn)證平臺進(jìn)行歸納,對國內(nèi)外近年相關(guān)硬件設(shè)計研究及其驗(yàn)證情況進(jìn)行綜述,關(guān)注通信感知兩種系統(tǒng)對硬件的需求矛盾、帶內(nèi)全雙工(IBFD)自干擾消除(SIC)、功放(PA)效率、電路性能對建模要求更高等硬件設(shè)計挑戰(zhàn)。首先,總結(jié)、比較已有研究中通信感知一體化收發(fā)信機(jī)架構(gòu)設(shè)計。然后,介紹、分析現(xiàn)有通信感知一體化帶內(nèi)全雙工自干擾抑制方案、低峰均功率比(PAPR)波形與高性能PA設(shè)計、器件高精度建模方法以及硬件系統(tǒng)性驗(yàn)證平臺。最后,總結(jié)全文并對未來通信感知一體化硬件設(shè)計所面臨的開放性問題進(jìn)行展望。
-
關(guān)鍵詞:
- 第6代移動通信 /
- 通信感知一體化 /
- 帶內(nèi)全雙工 /
- 軟件無線電 /
- 雷達(dá)
Abstract:Objective: The field of cellular mobile communication is advancing toward post-5G (5.5G, Beyond 5G, 5G Advanced) and 6th Generation (6G) standards. This evolution involves a shift from traditional sub-6 GHz operating frequency bands to higher frequency ranges, including millimeter wave (mmWave), terahertz (THz), and even visible light frequencies, which intersect with radar operating bands. Technologies such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) have gained widespread application in both wireless communication and radar domains. Given the shared characteristics and commonalities in signal processing and operating frequency bands between these two fields, “Integrated Sensing And Communication (ISAC)” has emerged as a significant research focus in wireless technologies like 5G Advanced (5G-A), 6G, Wireless Fidelity (WiFi), and radar. This development points toward a network perception paradigm that combines communication, sensing, and computing. The “ISAC” concept aims to unify wireless communication systems (including cellular and WiFi) with wireless sensing technologies (such as radar) and even network Artificial Intelligence (AI) computing capabilities into a cohesive framework. By integrating these elements, the physical layer can share frequencies and Radio Frequency (RF) hardware resources, leading to several advantages: spectrum conservation, cost reduction, minimized hardware size and weight, and enhanced communication perception. In this article, the focus of communication perception integration is primarily on radar communication. ISAC necessitates that both communication and sensing utilize the same radio frequency band and hardware resources. The diverse characteristics of multiple frequency bands, along with the varying hardware requirements for communication and sensing, present increased challenges for ISAC hardware design. Effective hardware design for ISAC systems demands a well-considered architecture and device design for RF transceivers. Key considerations include the receiver’s continuous signal sensing, link budget, and noise figure, all of which are sensitive to factors such as system size, weight, power consumption, and cost. A comprehensive review of relevant literature reveals that while studies on overall architecture, waveform design, signal processing, and THz technology exist within the ISAC domain, they often center on theoretical models and software simulation. Hardware design and technical verification methodologies are sporadically addressed across different studies. Although some literature details specific hardware designs and validation approaches, these are limited in number compared to the rich body of theoretical and algorithmic research, indicating a need for more comprehensive and systematic reviews focused specifically on ISAC hardware design. Methods: This paper summarizes the hardware designs, verification technologies, and systemic hardware verification platforms pertinent to beyond 5G, 6G, and WiFi ISAC systems. Additionally, recent researches on related hardware designs and verification both domestically and internationally are reviewed. The analysis addresses the challenges in hardware design, including the conflicting requirements between communication and sensing systems, In Band Full Duplex (IBFD) Self-Interference Cancellation (SIC), Power Amplifier (PA) efficiency, and the need for more accurate circuit performance modeling. Results and Discussions: Initially, the design of ISAC transceiver architectures from existing research is summarized and compared. Subsequently, an overview and analysis of current ISAC IBFD self-interference suppression strategies, low Peak to Average Power Ratio (PAPR) waveforms, high-performance PA designs, precise device modeling techniques, and systemic hardware verification platforms are presented. Finally, the paper provides a summary of the findings. Future challenges in ISAC hardware design are discussed, including the effects of hardware defects on sensing accuracy, ultra-large scale MIMO systems, high-frequency IBFD, and ISAC hardware designs for Unmanned Aerial Vehicle (UAV) applications. The performance metrics of ISAC IBFD architectures are compared, while the various ISAC transceiver architectures are outlined. Representative hardware verification platforms for ISAC systems are presented. The different ISAC transceiver architectures summarized in this paper are illustrated. Conclusions: In recent years, preliminary research has been conducted on integrated air interface architecture, transceiver hardware design, systematic hardware verification, and demonstration of sensing technologies such as 5G-A, 6G, and WiFi, both domestically and internationally. However, certain limitations persist. Beyond 5G networks, post-5G and 6G ISAC hardware verification platforms primarily operate at the link level rather than at the network system level. This focus on ISAC without the integration of computing functions leads to increased volume and power consumption costs and a reliance on commercial instruments and SDR platforms. Furthermore, the IBFD self-interference suppression technology has yet to fully satisfy the demands of future ultra-large-scale MIMO systems, necessitating further integration with large-scale artificial intelligence model technologies. In light of impending technological challenges and issues of openness, it is crucial for academia and industry to collaborate in addressing these challenges and researching viable solutions. To expedite testing optimization and industrial implementation, practical hardware design transition solutions are required that balance advancements in high-frequency support, receiver architecture, and networking architecture, facilitating the efficient realization of the “ideal” of ISAC. -
表 1 通感一體化IBFD架構(gòu)性能對比
文獻(xiàn) 頻點(diǎn)
(GHz)帶寬
(MHz)波形 感知性能 通信性能 收發(fā)信機(jī)
隔離度(dB)[44,45] 1.74 40 IEEE 802.11 OFDM波形 在保持與另一通信節(jié)點(diǎn)的IBFD鏈路的同時,在室內(nèi)檢測20 m內(nèi)的目標(biāo),能夠?qū)λ俣葹?.2~1 m/s的運(yùn)動物體測速 誤碼率低于1.5% 大于85 [46] 2.4 100 4G LTE與5G NR OFDM波形 可在室外對距離102.1 m、相對速度9 m/s的車輛進(jìn)行測距測速,可以取得1 m量級的距離估計精度和超過90%的目標(biāo)檢測概率 未提供 100 下載: 導(dǎo)出CSV
表 2 通感一體化收發(fā)信機(jī)架構(gòu)總結(jié)
文獻(xiàn) 收發(fā)信機(jī)架構(gòu) 通信雙工方式 優(yōu)點(diǎn) 缺點(diǎn) 說明 [32–34] TDD架構(gòu):傳統(tǒng)無線電架構(gòu)(超外差、零中頻等) TDD 可直接復(fù)用已有架構(gòu) 存在雷達(dá)感知最小距離問題,通信和雷達(dá)對收發(fā)信機(jī)要求不同導(dǎo)致一體化功能實(shí)現(xiàn)較為困難 [35,36] TDD架構(gòu):接收機(jī)通信感知鏈路部分分離 TDD 保持接收機(jī)靈敏度,節(jié)省ADC 接收機(jī)額外增加感知鏈路,體積、重量增大 接收機(jī)天線、射頻、大部分中頻鏈路分離,時分復(fù)用
基帶鏈路[42] TDD架構(gòu):接收機(jī)基于多端口干涉器 TDD 便于估計AOA、簡單易實(shí)現(xiàn)、低成本、極低功耗、可重配置 接收機(jī)靈敏度減小、動態(tài)范圍有限、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松) [23] IBFD架構(gòu) IBFD(接收機(jī)可持續(xù)接收信號) 通信頻譜利用率提升接近2倍、無雷達(dá)感知最小距離問題 收發(fā)天線互耦、自干擾抑制帶來接收機(jī)計算資源消耗與硬件復(fù)雜度的增大 學(xué)術(shù)研究與未來產(chǎn)業(yè)落地的理想終極方案 [16] 折中架構(gòu):接收機(jī)通信感知鏈路完全分離 TDD(接收機(jī)中的感知鏈路可持續(xù)接收信號) 避免自干擾、工程易實(shí)現(xiàn)、無雷達(dá)感知最小距離問題 接收機(jī)額外增加感知鏈路,體積、重量增大 學(xué)術(shù)研究與目前產(chǎn)業(yè)測試的折中過渡方案 [47,48] 高頻段架構(gòu):接收機(jī)混頻器前置 TDD 緩解接收機(jī)飽和問題、面積與功耗減小、無雷達(dá)感知最小距離問題 接收機(jī)噪聲系數(shù)增大、靈敏度減小、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松) [49] 高頻段架構(gòu):接收機(jī)LNA選擇性旁路 TDD 緩解接收機(jī)飽和問題、面積與功耗減小、無雷達(dá)感知最小距離問題 接收機(jī)噪聲系數(shù)增大、雷達(dá)靈敏度減小、雷達(dá)探測距離減小 適合毫米波和大規(guī)模MIMO(對噪聲性能要求寬松),發(fā)射信號時旁路 下載: 導(dǎo)出CSV
表 3 通感一體化部分代表性硬件驗(yàn)證平臺
文獻(xiàn) 頻點(diǎn)、帶寬 波形 感知驗(yàn)證情況 通信驗(yàn)證情況 特點(diǎn)或局限性 [46] 2.4 GHz,
40 MHzOFDM 5G BS端下行鏈路室外靜止無人機(jī)測距(距離
40 m),室外多車輛測距、測速(距離50~
110 m,速度12 m/s、±9 m/s)。– IBFD架構(gòu),自干擾消除方法設(shè)計 [70,71] 24 GHz,
93.1 MHzOFDM 室外實(shí)際路況多車輛測距(100 m以內(nèi))、
測速(–5 m/s,–12 m/s)。– 面向車聯(lián)網(wǎng)、自動駕駛場景 [29] 3.5 GHz,
10 MHzLFM 模糊函數(shù)性能較好。 比特率1 Mbit/s,定向通信,給出QPSK星座圖
(誤碼率較好)雷達(dá)通信一體化波形首次得到硬件技術(shù)驗(yàn)證[24] [75] 73 GHz,
2 GHzOFDM 毫米波室內(nèi)外靜止目標(biāo)測距(4 m內(nèi))、
測角、不支持測速。單工通信 毫米波高頻段,受制于SIMO機(jī)械模擬的慢速,只能對靜止目標(biāo)測距、測角 [94,95] 3.5 GHz,
18 MHzOFDM 使用NI公司5G大規(guī)模MIMO實(shí)驗(yàn)平臺驗(yàn)證近場室內(nèi)移動物體厘米級定位。 - 只是初步探究感知功能在未來集成到大規(guī)模MIMO通信系統(tǒng)中的技術(shù)可行性,沒有進(jìn)行通信功能與性能測試 [78,81,85] 28 GHz,
800 MHzOFDM 通感算一體化:5G毫米波室內(nèi)多車協(xié)同定位,測距0.9 m,精度0.044 m。 2.8 Gbit/s 面向車聯(lián)網(wǎng)、自動駕駛場景的多站協(xié)同感知;TDD架構(gòu) [81] 27.5 GHz OFDM 車輛測距、測速、測角。 視頻傳輸 面向車聯(lián)網(wǎng)、自動駕駛場景的單站感知 [86,87] 5.4 GHz,
560 MHzSTC-OFDM-Chirp 固定翼飛機(jī)機(jī)載8 km高空對地SAR成像,
分辨率0.3 m×0.3 m。傳輸圖像,誤碼率較高(未加信道編碼) 時空域多維度多波束一體化波形調(diào)制;
固定翼飛機(jī)SAR成像[93] 26 GHz,
100 MHzCP-OFDM 室外5G基站車輛、無人機(jī)感知:測距500 m
以上;車輛測速精度小于0.1 km/h
(車速30 km/h)、測角精度小于0.2o。- 基于5G現(xiàn)網(wǎng)的通感一體化驗(yàn)證 [96] 140 GHz,
8 GHzOFDM, FMCW 大規(guī)模MIMO太赫茲毫米級不可
見物體3維成像。- 只是初步探究太赫茲感知集成到大規(guī)模MIMO通信的可行性 下載: 導(dǎo)出CSV
-
[1] 孟凡軍, 鄧炳光, 秦啟航, 等. 5G NR小區(qū)搜索中一種頻域相關(guān)快速同步算法[J]. 電訊技術(shù), 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008.MENG Fanjun, DENG Bingguang, QIN Qihang, et al. A fast synchronization algorithm based on frequency domain correlation in 5G NR cell search[J]. Telecommunication Engineering, 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008. [2] 韓松岳, 苗愷, 李勇, 等. 區(qū)塊鏈與5G MEC在軍事領(lǐng)域的融合應(yīng)用[J]. 海軍航空大學(xué)學(xué)報, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002.HAN Songyue, MIAO Kai, LI Yong, et al. Integration application of blockchain and 5G MEC in military field[J]. Journal of Naval Aviation University, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002. [3] IMT-2030(6G)推進(jìn)組. 6G網(wǎng)絡(luò)架構(gòu)愿景與關(guān)鍵技術(shù)展望白皮書[R]. 2021.IMT-2030(6G) Promotion Group. 6G network architecture vision and key technology outlook white paper[R]. 2021. [4] 胡圣波, 朱滿琴, 楊露露, 等. 未來無線通信與大數(shù)據(jù)、人工智能[J]. 貴州師范大學(xué)學(xué)報: 自然科學(xué)版, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001.HU Shengbo, ZHU Manqin, YANG Lulu, et al. Future wireless communication, big data and AI[J]. Journal of Guizhou Normal University: Natural Sciences, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001. [5] 王朝煒, 王天宇, 劉婷, 等. 6G車聯(lián)網(wǎng)中基于路側(cè)設(shè)備部署優(yōu)化的機(jī)會式數(shù)據(jù)卸載[J]. 無線電工程, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001.WANG Chaowei, WANG Tianyu, LIU Ting, et al. Opportunistic data offloading based on RSU deployment optimization in 6G internet of vehicle[J]. Radio Engineering, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001. [6] 肖沈陽, 金志剛, 蘇毅珊, 等. 一種優(yōu)化的gOMP稀疏OFDM信道估計方法[J]. 工程科學(xué)與技術(shù), 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000.XIAO Shenyang, JIN Zhigang, SU Yishan, et al. An optimized gOMP algorithm for sparse OFDM channel estimation[J]. Advanced Engineering Sciences, 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000. [7] 龐立華, 吳文捷, 張陽, 等. 多小區(qū)Massive MIMO系統(tǒng)的分布式導(dǎo)頻優(yōu)化分配[J]. 西安科技大學(xué)學(xué)報, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224.PANG Lihua, WU Wenjie, ZHANG Yang, et al. Distributed pilot optimizing assignment in multi-cell Massive MIMO systems[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224. [8] IMT-2030(6G)推進(jìn)組. 通信感知一體化技術(shù)研究報告[R]. 2021.IMT-2030(6G) Promotion Group. Research report on integration of sensing and communication technology[R]. 2021. [9] HUANG Yuhong. Challenges and opportunities of sub-6 GHz integrated sensing and communications for 5G-Advanced and beyond[J]. Chinese Journal of Electronics, 2024, 33(2): 323–325. doi: 10.23919/cje.2023.00.251. [10] 閆實(shí), 彭木根, 王文博. 通信感知計算融合: 6G愿景與關(guān)鍵技術(shù)[J]. 北京郵電大學(xué)學(xué)報, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081. [11] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [12] 尉志青, 馮志勇, 李怡恒, 等. 太赫茲通信感知一體化波形: 現(xiàn)狀與展望[J]. 通信學(xué)報, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007. [13] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120. [14] 余顯斌, 呂治東, 李漣漪, 等. 太赫茲感知通信一體化波形設(shè)計與信號處理[J]. 通信學(xué)報, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015.YU Xianbin, LYU Zhidong, LI Lianyi, et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015. [15] 林粵偉, 王溢, 張奇勛, 等. 面向6G的通信感知一體化車聯(lián)網(wǎng)研究綜述[J]. 信號處理, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.LIN Yuewei, WANG Yi, ZHANG Qixun, et al. Overview of the research on 6G oriented internet of vehicles for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002. [16] 馬忠貴, 李卓, 梁彥鵬. 自動駕駛車聯(lián)網(wǎng)中通感算融合研究綜述與展望[J]. 工程科學(xué)學(xué)報, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003.MA Zhonggui, LI Zhuo, and LIANG Yanpeng. Overview and prospect of communication-sensing-computing integration for autonomous driving in the Internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003. [17] 劉鑫, 王忠, 秦明星. 多機(jī)器人協(xié)同SLAM技術(shù)研究進(jìn)展[J]. 計算機(jī)工程, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504.LIU Xin, WANG Zhong, and QIN Mingxing. Research progress of multi-robot collaborative SLAM technology[J]. Computer Engineering, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504. [18] 王紅星, 徐婉琳, 張勃陽. 一種基于改進(jìn)ORB和PROSAC特征點(diǎn)匹配的V-SLAM算法[J]. 河南理工大學(xué)學(xué)報: 自然科學(xué)版, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137.WANG Hongxing, XU Wanlin, and ZHANG Boyang. V-SLAM algorithm based on improved ORB and PROSAC feature point matching[J]. Journal of Henan Polytechnic University: Natural Science, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137. [19] 譚運(yùn)馨, 黃海風(fēng), 賴濤, 等. 基于GPU的長軌SAR實(shí)時成像算法[J]. 數(shù)據(jù)采集與處理, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013.TAN Yunxin, HUANG Haifeng, LAI Tao, et al. GPU-based real-time imaging algorithm for long-track SAR[J]. Journal of Data Acquisition and Processing, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013. [20] 劉帥奇, 雷鈺, 龐姣, 等. 基于生成對抗網(wǎng)絡(luò)的SAR圖像去噪[J]. 河北大學(xué)學(xué)報: 自然科學(xué)版, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013.LIU Shuaiqi, LEI Yu, PANG Jiao, et al. SAR image denoising based on generative adversarial networks[J]. Journal of Hebei University: Natural Science Edition, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013. [21] 劉光毅, 樓夢婷, 王啟星, 等. 面向6G的通信感知一體化架構(gòu)與關(guān)鍵技術(shù)[J]. 移動通信, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002.LIU Guangyi, LOU Mengting, WANG Qixing, et al. Towards 6G: Research on integrated sensing and communication architecture and key technology[J]. Mobile Communications, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002. [22] 葉威, 高樹亮. 面向5.5G的通信感知一體化[J]. 信息通信技術(shù), 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005.YE Wei and GAO Shuliang. Integrated sensing and communication towards 5.5G[J]. Information and Communications Technologies, 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005. [23] HASSANI S A, PARASHAR K, BOURDOUX A, et al. Doppler radar with in-band full duplex radios[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 1945–1953. doi: 10.1109/INFOCOM.2019.8737408. [24] 劉凡, 袁偉杰, 原進(jìn)宏, 等. 雷達(dá)通信頻譜共享及一體化: 綜述與展望[J]. 雷達(dá)學(xué)報, 2021, 10(3): 467–484. doi: 10.12000/JR20113.LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113. [25] 郝躍星. 恒包絡(luò)OFDM雷達(dá)通信一體化關(guān)鍵技術(shù)研究[D]. [碩士論文], 西安電子科技大學(xué), 2017.HAO Yuexing. Research on the key technology of constant envelop OFDM radar-communication integration[D]. [Master dissertation], Xidian University, 2017. [26] 張秋月, 張林讓, 谷亞彬, 等. 恒包絡(luò)OFDM雷達(dá)通信一體化信號設(shè)計[J]. 西安交通大學(xué)學(xué)報, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011.ZHANG Qiuyue, ZHANG Linrang, GU Yabin, et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi’an Jiaotong University, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011. [27] 肖博, 霍凱, 劉永祥. 雷達(dá)通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學(xué)報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515. [28] MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, part I: Theory[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690. doi: 10.1109/RADAR.2017.7944478. [29] MCCORMICK P M, RAVENSCROFT B, BLUNT S D, et al. Simultaneous radar and communication emissions from a common aperture, part II: Experimentation[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1697–1702. doi: 10.1109/RADAR.2017.7944480. [30] IMT-2030 (6G) 推進(jìn)組. 通信感知一體化技術(shù)研究報告[R]. 2版. 2022.IMT-2030 (6G) Promotion Group. Research report on integrated sensing and communication technology[R]. 2nd ed. 2022. [31] BOZORGI F, SEN P, BARRETO A N, et al. RF front-end challenges for joint communication and radar sensing[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376387. [32] HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. 7th IEEE European Radar Conference, Paris, France, 2010: 65–68. [33] HAN Liang and WU Ke. Emerging advances in transceiver technology fusion of wireless communication and radar sensing systems[C]. IEEE Asia-Pacific Microwave Conference, Melbourne, Australia, 2011: 951–954. [34] HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156. [35] MOGHADDASI J and WU Ke. Improved joint radar-radio (RadCom) transceiver for future intelligent transportation platforms and highly mobile high-speed communication systems[C]. IEEE International Wireless Symposium, Beijing, China, 2013: 1–4. doi: 10.1109/IEEE-IWS.2013.6616796. [36] MOGHADDASI J and WU Ke. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818–838. doi: 10.1109/ACCESS.2016.2530979. [37] ZHANG Hui, LI Lin, and WU Ke. 24GHz software-defined radar system for automotive applications[C]. IEEE European Conference on Wireless Technologies, Munich, Germany, 2007: 138–141. doi: 10.1109/ECWT.2007.4403965. [38] HAN Liang and WU Ke. 24-GHz joint radar and radio system capable of time-agile wireless sensing and communication[C]. IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011: 1–4. doi: 10.1109/MWSYM.2011.5972832. [39] HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. doi: 10.1109/TMTT.2011.2179552. [40] HAN Liang and WU Ke. Joint wireless communication and radar sensing systems–state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450. [41] MOGHADDASI J and WU Ke. Unified radar-communication (RadCom) multi-port interferometer transceiver[C]. IEEE European Radar Conference, Nuremberg, Germany, 2013: 479–482. [42] MOGHADDASI J and WU Ke. Millimeter-wave multifunction multiport interferometric receiver for future wireless systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1452–1466. doi: 10.1109/TMTT.2017.2772927. [43] HASSANI S A, GUEVARA A, PARASHAR K, et al. An in-band full-duplex transceiver for simultaneous communication and environmental sensing[C]. IEEE 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 1389–1394. doi: 10.1109/ACSSC.2018.8645165. [44] HASSANI S A, LAMPU V, PARASHAR K, et al. In-band full-duplex radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 1086–1097. doi: 10.1109/JSYST.2020.2992689. [45] HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Joint in-band full-duplex communication and radar processing[J]. IEEE Systems Journal, 2022, 16(2): 3391–3399. doi: 10.1109/JSYST.2021.3091383. [46] BARNETO C B, RIIHONEN T, TURUNEN M, et al. Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4042–4054. doi: 10.1109/TMTT.2019.2930510. [47] IOTTI L, KRISHNAMURTHY S, LACAILLE G, et al. A low-power 70-100-GHz mixer-first RX leveraging frequency-translational feedback[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2043–2054. doi: 10.1109/JSSC.2020.2991541. [48] MOSTAJERAN A, CATHELIN A, and AFSHARI E. A 170-GHz fully integrated single-chip FMCW imaging radar with 3-D imaging capability[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2721–2734. doi: 10.1109/JSSC.2017.2725963. [49] BARNETO C B, TURUNEN M, LIYANAARACHCHI S D, et al. High-accuracy radio sensing in 5G new radio networks: Prospects and self-interference challenge[C]. IEEE 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 1159–1163. doi: 10.1109/IEEECONF44664.2019.9048786. [50] VAN LIEMPD B, HERSHBERG B, ARIUMI S, et al. A +70-dBm IIP3 electrical-balance duplexer for highly integrated tunable front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(12): 4274–4286. doi: 10.1109/TMTT.2016.2613039. [51] MIKHAEL M, VAN LIEMPD B, CRANINCKX J, et al. An in-band full-duplex transceiver prototype with an in-system automated tuning for RF self-interference cancellation[C]. 1st IEEE International Conference on 5G for Ubiquitous Connectivity, Akaslompolo, Finland, 2014: 110–115. doi: 10.4108/icst.5gu.2014.258118. [52] VERMEULEN T, VAN LIEMPD B, HERSHBERG B, et al. Real-time RF self-interference cancellation for in-band full duplex[C]. IEEE International Symposium on Dynamic Spectrum Access Networks, Stockholm, Sweden, 2015: 275–276. doi: 10.1109/DySPAN.2015.7343915. [53] 徐誠, 郭進(jìn)陽, 李超, 等. 使用HLS開發(fā)FPGA異構(gòu)加速系統(tǒng): 問題、優(yōu)化方法和機(jī)遇[J]. 計算機(jī)科學(xué)與探索, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102.XU Cheng, GUO Jinyang, LI Chao, et al. Using HLS to develop FPGA heterogeneous acceleration system: Problems, optimization methods and opportunities[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102. [54] 吳宇航, 何軍. 基于FPGA的人體行為識別系統(tǒng)的設(shè)計[J]. 南京信息工程大學(xué)學(xué)報: 自然科學(xué)版, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009.WU Yuhang and HE Jun. Design of human activity recognition system based on FPGA[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009. [55] HUUSARI T, CHOI Y S, LIIKKANEN P, et al. Wideband self-adaptive RF cancellation circuit for full-duplex radio: Operating principle and measurements[C]. IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015: 1–7. doi: 10.1109/VTCSpring.2015.7146163. [56] HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Adaptive filter design for simultaneous in-band full-duplex communication and radar[C]. IEEE 17th European Radar Conference, Utrecht, Netherlands, 2021: 5–8. doi: 10.1109/EuRAD48048.2021.00013. [57] HU Xiaoyan, MASOUROS C, LIU Fan, et al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548. [58] 任樂. 毫米波寬帶混頻與固態(tài)合成功放及線性化技術(shù)研究[D]. [博士論文], 東南大學(xué), 2022. doi: 10.27014/d.cnki.gdnau.2022.000237.REN Le. Research on techniques of millimeter wave broadband mixing and solid-state power combined amplifier and linearization[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.000237. [59] GAVELL M, GRANSTROM G, FAGER C, et al. An E-band analog predistorter and power amplifier MMIC chipset[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(1): 31–33. doi: 10.1109/LMWC.2017.2768519. [60] DORVAL R, GRAY R, and KATZ A. A versatile wideband linearizer/driver amplifier for use with multiple millimeter-wave TWTAs[C]. IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, Orlando, USA, 2019: 1–3. doi: 10.1109/PAWR.2019.8708717. [61] CHO G, PARK J, and HONG S. A 25.5-dB peak gain F-band power amplifier with an adaptive built-in linearizer[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 106–108. doi: 10.1109/LMWC.2019.2954217. [62] OTHMANI M, BOULEJFEN N, BRIHUEGA A, et al. Delta-Sigma modulator-embedded digital predistortion for 5G transmitter linearization[J]. IEEE Transactions on Communications, 2022, 70(8): 5558–5571. doi: 10.1109/TCOMM.2022.3184167. [63] MOSALAM H, XIAO Wenbo, GUI Xiaoyan, et al. A 54–68 GHz power amplifier with improved linearity and efficiency in 40 nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(1): 40–44. doi: 10.1109/TCSII.2021.3084628. [64] MA Zonglin, MA Kaixue, WANG Keping, et al. A 28GHz compact 3-way transformer-based parallel-series Doherty power amplifier with 20.4%/14.2% PAE at 6-/12-dB power back-off and 25.5dBm PSAT in 55nm bulk CMOS[C]. IEEE International Solid-State Circuits Conference, San Francisco, USA, 2022: 320–322. doi: 10.1109/ISSCC42614.2022.9731564. [65] 于飛. 毫米波線性化器研究[D]. [碩士論文], 電子科技大學(xué), 2020. doi: 10.27005/d.cnki.gdzku.2020.001942.YU Fei. Research of millimeter wave linearizer[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.001942. [66] 張凈植, 余益明, 吳韻秋, 等. 硅基毫米波集成電路設(shè)計發(fā)展現(xiàn)狀與挑戰(zhàn)[J]. 中國科學(xué): 信息科學(xué), 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334.ZHANG Jingzhi, YU Yiming, WU Yunqiu, et al. Developments and challenges of mm-Wave integrated circuits on silicon[J]. Scientia Sinica Informationis, 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334. [67] EISENSTADT W R and EO Y. S-parameter-based IC interconnect transmission line characterization[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(4): 483–490. doi: 10.1109/33.159877. [68] 魏震楠. 毫米波通信的功率放大器芯片及片上器件高精度建模研究[D]. [博士論文], 東南大學(xué), 2022. doi: 10.27014/d.cnki.gdnau.2022.003568.WEI Zhennan. Research on power amplifier and high-precision modeling of on-chip devices for millimeter-wave communications[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.003568. [69] TANG Zhidong, WANG Zewei, GUO Ao, et al. Cryogenic CMOS RF device modeling for scalable quantum computer design[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 532–539. doi: 10.1109/JEDS.2022.3186979. [70] STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. 69th IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5. doi: 10.1109/VETECS.2009.5073387. [71] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110. [72] BRAUN M, MüLLER M, FUHR M, et al. A USRP-based testbed for OFDM-based radar and communication systems[C]. Proceedings of 22nd Virginia Tech Symposium on Wireless Communications, Blacksburg, USA, 2012: 1–6. [73] MEALEY T C and DULY A J. BEEMER: A firmware-tuned, software-defined MIMO radar testbed[C]. IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–6. doi: 10.1109/ARRAY.2016.7832582. [74] RAVENSCROFT B, MCCORMICK P M, BLUNT S, et al. Experimental assessment of tandem-hopped radar and communications (THoRaCs)[C]. IEEE International Radar Conference, Toulon, France, 2019: 1–6. doi: 10.1109/RADAR41533.2019.171280. [75] KUMARI P, MEZGHANI A, and HEATH R W. JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar[J]. IEEE Open Journal of Vehicular Technology, 2021, 2: 218–234. doi: 10.1109/OJVT.2021.3069946. [76] BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220. [77] SANSON J B, CASTANHEIRA D, GAMEIRO A, et al. Non-orthogonal multicarrier waveform for radar with communications systems: 24 GHz GFDM RadCom[J]. IEEE Access, 2019, 7: 128694–128705. doi: 10.1109/ACCESS.2019.2940299. [78] ZHANG Qixun, SUN Huan, WEI Zhiqing, et al. Sensing and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 1278–1279. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162963. [79] ZHANG Qixun, LI Zhenhao, GAO Xinye, et al. Performance evaluation of radar and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, Vancouver, Canada, 2021: 1–2. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484463. [80] ZHANG Qixun, WANG Xinna, LI Zhenhao, et al. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1500–1514. doi: 10.1109/JSTSP.2021.3109666. [81] Online video[EB/OL]. https://www.chaspark.com/#/coffeeHours/media/809260877825687552.2023.1. [82] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408. [83] XU Tongyang, LIU Fan, MASOUROS C, et al. An experimental proof of concept for integrated sensing and communications waveform design[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1643–1655. doi: 10.1109/OJCOMS.2022.3209641. [84] ZHANG Qixun and GAO Xinye. Joint communication and sensing enabled cooperative perception testbed for connected automated vehicles[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops, New York, USA, 2022: 1–2. doi: 10.1109/INFOCOMWKSHPS54753.2022.9798074. [85] ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/JSAC.2022.3155506. [86] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne MIMO radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826. [87] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561. [88] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of airborne MIMO SAR system for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204113. doi: 10.1109/TGRS.2021.3066478. [89] 唐家政. 基于數(shù)據(jù)庫劃分的改進(jìn)WLAN室內(nèi)指紋定位研究[D]. [碩士論文], 南京郵電大學(xué), 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400.TANG Jiazheng. Research on improved WLAN indoor fingerprint location based on database partition[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400. [90] 高暢蔓. 基于CSI圖像特征的室內(nèi)定位技術(shù)[D]. [碩士論文], 南京郵電大學(xué), 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476.GAO Changman. CSI indoor location technology based on image features[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476. [91] LI Yang, WU Dan, ZHANG Jie, et al. DiverSense: Maximizing Wi-Fi sensing range leveraging signal diversity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(2): 94. doi: 10.1145/3536393. [92] WANG Guanhua, ZOU Yongpan, ZHOU Zimu, et al. We can hear you with Wi-Fi![C]. Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 593–604. doi: 10.1145/2639108.2639112. [93] 徐曉東, 李巖, 葉威, 等. 通信感知一體化應(yīng)用場景、關(guān)鍵技術(shù)和網(wǎng)絡(luò)架構(gòu)[J]. 移動通信, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001.XU Xiaodong, LI Yan, YE Wei, et al. Application scenarios, key technologies and network architecture of integrated sensing and communication[J]. Mobile Communications, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001. [94] SAKHNINI A, DE BAST S, GUENACH M, et al. Near-field coherent radar sensing using a massive MIMO communication testbed[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6256–6270. doi: 10.1109/TWC.2022.3148035. [95] SAKHNINI A, DE BAST S, GUENACH M, et al. An experimental evaluation of robust near-field radar localization using a massive MIMO testbed[C]. 2nd IEEE International Symposium on Joint Communications and Sensing, Seefeld, Austria, 2022: 1–6. doi: 10.1109/JCS54387.2022.9743499. [96] LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device[C]. IEEE Joint European Conference on Networks and Communications and 6G Summit, Porto, Portugal, 2021: 544–549. doi: 10.1109/EuCNC/6GSummit51104.2021.9482537. [97] TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324. [98] 張若愚, 袁偉杰, 崔原豪, 等. 面向6G的大規(guī)模MIMO通信感知一體化: 現(xiàn)狀與展望[J]. 移動通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003. [99] 楊杰, 黃藝璇, 杜濤, 等. 通信感知一體化原型驗(yàn)證的研究現(xiàn)狀與發(fā)展趨勢[J]. 通信學(xué)報, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205.YANG Jie, HUANG Yixuan, DU Tao, et al. Prototype verification for integrated sensing and communications: Current status and development trends[J]. Journal on Communications, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205. [100] 王歡, 王陶冶, 商惠敏, 等. 基于ChatGPT的通用人工智能發(fā)展情況及對廣東的啟示[J]. 自動化與信息工程, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002.WANG Huan, WANG Taoye, SHANG Huimin, et al. The development of general artificial intelligence based on ChatGPT and its inspiration for Guangdong[J]. Automation & Information Engineering, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002. -