一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

采用自適應(yīng)預(yù)篩選的遙感圖像目標(biāo)開集檢測研究

黨思航 李曉哲 夏召強(qiáng) 蔣曉悅 桂術(shù)亮 馮曉毅

黨思航, 李曉哲, 夏召強(qiáng), 蔣曉悅, 桂術(shù)亮, 馮曉毅. 采用自適應(yīng)預(yù)篩選的遙感圖像目標(biāo)開集檢測研究[J]. 電子與信息學(xué)報, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
引用本文: 黨思航, 李曉哲, 夏召強(qiáng), 蔣曉悅, 桂術(shù)亮, 馮曉毅. 采用自適應(yīng)預(yù)篩選的遙感圖像目標(biāo)開集檢測研究[J]. 電子與信息學(xué)報, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
Citation: DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426

采用自適應(yīng)預(yù)篩選的遙感圖像目標(biāo)開集檢測研究

doi: 10.11999/JEIT231426
基金項(xiàng)目: 國家自然科學(xué)基金(62201461, 62301101),上海市2022年度“科技創(chuàng)新行動計劃”啟明星培育(揚(yáng)帆專項(xiàng))項(xiàng)目(22YF1452100),陜西省科技廳秦創(chuàng)原項(xiàng)目(QCYRCXM-2022-325),陜西省重點(diǎn)研發(fā)計劃(2023-ZDLGY-16, 2023-ZDLGY-44, 2023-ZDLGY-12, 2021-ZDLGY15-01, 2021-ZDLGY09-04, 2021GY-004, 2022-ZDLGY06-07),重慶市博士“直通車”科研項(xiàng)目(sl202100000315)
詳細(xì)信息
    作者簡介:

    黨思航:男,副教授,研究方向?yàn)槔走_(dá)目標(biāo)識別、增量學(xué)習(xí)

    李曉哲:男,碩士,研究方向?yàn)槟繕?biāo)檢測、開集識別

    夏召強(qiáng):男,副教授,研究方向?yàn)閳D像處理、計算機(jī)視覺

    蔣曉悅:女,副教授,研究方向?yàn)閳D像處理、計算機(jī)視覺

    桂術(shù)亮:男,講師,研究方向?yàn)槔走_(dá)信號處理、目標(biāo)檢測

    馮曉毅:女,教授,研究方向?yàn)閳D像處理、計算機(jī)視覺

    通訊作者:

    夏召強(qiáng) zxia@nwpu.edu.cn

  • 中圖分類號: TP75

Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening

Funds: The National Natural Science Foundation of China(62201461, 62301101), Shanghai Sailing Program (22YF1452100), The QINCHUANGYUAN Program (QCYRCXM-2022-325), The Key Research and Development Program of Shaanxi (2023-ZDLGY-16, 2023-ZDLGY-44, 2023-ZDLGY-12, 2021-ZDLGY15-01, 2021-ZDLGY09-04, 2021GY-004, 2022-ZDLGY06-07), Chongqing Doctoral Direct Train Research Project (sl202100000315)
  • 摘要: 開放動態(tài)環(huán)境下目標(biāo)類別不斷豐富,遙感目標(biāo)檢測問題不能局限于已知類目標(biāo)的鑒別,還需要對未知類目標(biāo)做出有效判決。該文設(shè)計一種基于自適應(yīng)預(yù)篩選的遙感開集目標(biāo)檢測網(wǎng)絡(luò),首先,提出面向目標(biāo)候選框的自適應(yīng)預(yù)篩選模塊,依據(jù)篩選出的候選框坐標(biāo)得到具有豐富語義信息和空間特征的查詢傳遞至解碼器。然后,結(jié)合原始圖像中目標(biāo)邊緣信息提出一種偽標(biāo)簽選取方法,并以開集判決為目的構(gòu)造損失函數(shù),提高網(wǎng)絡(luò)對未知新類特征的學(xué)習(xí)能力。最后,采用MAR20飛機(jī)目標(biāo)識別數(shù)據(jù)集模擬不同的開放動態(tài)遙感目標(biāo)檢測環(huán)境,通過廣泛的對比實(shí)驗(yàn)和消融實(shí)驗(yàn),驗(yàn)證了該文方法能夠?qū)崿F(xiàn)對已知類目標(biāo)的可靠檢測和未知類目標(biāo)的有效檢出。
  • 圖  1  網(wǎng)絡(luò)總體結(jié)構(gòu)

    圖  2  自適應(yīng)預(yù)篩選模塊

    圖  3  MAR20數(shù)據(jù)集部分圖像展示

    圖  4  MAR20測試集示例圖像定性結(jié)果

    1  基于圖像邊緣信息的偽標(biāo)簽選取算法

     輸入:當(dāng)前迭代$ t $條件下:對應(yīng)特征圖$ \boldsymbol{A} $;經(jīng)過DDETR匹配機(jī)制剩余的預(yù)測候選框$ {{\boldsymbol}}_{i}^{{\mathrm{F}}} $;基于圖像邊緣信息生成的候選框$ {{\boldsymbol}}_{j}^{{\mathrm{E}}} $;損失存儲隊(duì)
     列$ {L}_{m} $;微調(diào)參數(shù)$ {\lambda }_{p} $和$ {\lambda }_{n} $;權(quán)重更新迭代次數(shù)$ {T}_{w} $;權(quán)重值$ {w}_{1} $和$ {w}_{2} $;偽標(biāo)簽個數(shù)$ u $
     輸出:當(dāng)前迭代$ t $條件下:圖像的偽標(biāo)簽
     1. while train do:
     2. 式(1)初步得到基于卷積特征的目標(biāo)置信度得分$ F\left({{\boldsymbol}}_{i}^{{\mathrm{F}}}\right) $;
     3. 式(3)得到基于圖像底層邊緣信息的目標(biāo)置信度得分S$ \left({{\boldsymbol}}_{i}^{\mathrm{{E}}}\right) $;
     4. if $ t\mathrm{\%}{T}_{w}==0 $ then:
     5. 使用式(7)和$ {L}_{m} $計算$ \Delta l $;
     6. 使用式(8)計算$ \Delta w $;
     7. 使用式(5)更新權(quán)重值$ {w}_{1} $和$ {w}_{2} $;
     8. end if
     9. 使用式(4)得到剩余的預(yù)測候選框$ {{\boldsymbol}}_{i}^{{\mathrm{F}}} $的最終目標(biāo)置信度分?jǐn)?shù)$ {F}_{i}^{{\mathrm{new}}} $;
     10. 對$ {F}_{i}^{\mathrm{n}\mathrm{e}\mathrm{w}} $從大到小排序,選取前$ {u} $個候選框標(biāo)記“未知類”。
    下載: 導(dǎo)出CSV

    表  1  MAR20數(shù)據(jù)集圖像數(shù)量分布情況

    A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
    168 16 150 70 247 31 100 142 146 146
    A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
    86 66 212 252 108 265 173 37 129 130
    含多類 1017
    總計 3842
    下載: 導(dǎo)出CSV

    表  2  開集目標(biāo)檢測任務(wù)

    實(shí)驗(yàn)編號未知類目標(biāo)類別訓(xùn)練與測試比例總計
    #已知類+#未知類已知類未知類訓(xùn)練測試
    任務(wù)10.75A1~A5A6~A20644161805
    任務(wù)20.5A1~A10A11~A20736185921
    任務(wù)30.25A1~A15A16~A20764192956
    下載: 導(dǎo)出CSV

    表  3  網(wǎng)絡(luò)檢測結(jié)果對比(%)

    任務(wù)編號 任務(wù)1 任務(wù)2 任務(wù)3
    已知類mAP 未知類召回率 已知類mAP 未知類召回率 已知類mAP 未知類召回率
    Faster-RCNN 73.95 77.84 88.18
    YOLOv3 88.02 88.40 88.86
    DDETR 84.30 87.60 88.95
    OW-DETR 82.52 17.66 87.90 29.68 87.66 30.41
    CAT 77.40 21.21 83.78 36.09 85.05 53.42
    本文算法 89.09 38.67 90.35 47.17 90.38 61.20
    下載: 導(dǎo)出CSV

    表  4  模塊驗(yàn)證實(shí)驗(yàn)結(jié)果(%)

    模塊任務(wù)1消融實(shí)驗(yàn)任務(wù)2消融實(shí)驗(yàn)任務(wù)3消融實(shí)驗(yàn)
    基準(zhǔn)
    模型
    自適應(yīng)預(yù)篩選基于邊緣信息的
    偽標(biāo)簽選取策略
    已知類mAP未知類
    召回率
    已知類mAP未知類
    召回率
    已知類mAP未知類
    召回率
    82.5217.6687.9029.6887.6630.41
    89.342.4390.835.9689.7413.33
    83.2845.8187.5463.0187.6954.80
    89.0938.6790.3547.1790.3861.20
    下載: 導(dǎo)出CSV
  • [1] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. doi: 10.1016/j.dsp.2022.103514.
    [2] ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
    [3] 呂進(jìn)東, 王彤, 唐曉斌. 基于圖注意力網(wǎng)絡(luò)的半監(jiān)督SAR艦船目標(biāo)檢測[J]. 電子與信息學(xué)報, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.

    Lü Jindong, WANG Tong, and TANG Xiaobin. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.
    [4] 王璽坤, 姜宏旭, 林珂玉. 基于改進(jìn)型YOLO算法的遙感圖像艦船檢測[J]. 北京航空航天大學(xué)學(xué)報, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.

    WANG Xikun, JIANG Hongxu, and LIN Keyu. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.
    [5] AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308.
    [6] 黃玉玲, 陶昕辰, 朱濤, 等. 殘差對抗目標(biāo)檢測算法的遙感圖像檢測[J]. 電光與控制, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.

    HUANG Yuling, TAO Xinchen, ZHU Tao, et al. A remote sensing image detection method based on residuals adversarial object detection algorithm[J]. Electronics Optics & Control, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
    [7] 馬梁, 茍于濤, 雷濤, 等. 基于多尺度特征融合的遙感圖像小目標(biāo)檢測[J]. 光電工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.

    MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
    [8] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [10] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [11] 邵延華, 張鐸, 楚紅雨, 等. 基于深度學(xué)習(xí)的YOLO目標(biāo)檢測綜述[J]. 電子與信息學(xué)報, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.

    SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
    [12] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [13] GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
    [14] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
    [15] DANG Sihang, XIA Zhaoqiang, JIANG Xiaoyue, et al. Inclusive consistency-based quantitative decision-making framework for incremental automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215614. doi: 10.1109/TGRS.2023.3312330.
    [16] JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5826–5836. doi: 10.1109/CVPR46437.2021.00577.
    [17] GUPTA A, NARAYAN S, JOSEPH KJ, et al. OW-DETR: Open-world detection transformer[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9225–9234. doi: 10.1109/CVPR52688.2022.00902.
    [18] MA Shuailei, WANG Yuefeng, WEI Ying, et al. CAT: LoCalization and identification cascade detection transformer for open-world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19681–19690. doi: 10.1109/CVPR52729.2023.01885.
    [19] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5.
    [20] ZOHAR O, WANG K C, and YEUNG S. PROB: Probabilistic objectness for open world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11444–11453. doi: 10.1109/CVPR52729.2023.01101.
    [21] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735–3756. doi: 10.1109/JSTARS.2020.3005403.
    [22] ZITNICK C L and DOLLáR P. Edge boxes: Locating object proposals from edges[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 391–405. doi: 10.1007/978-3-319-10602-1_26.
    [23] 禹文奇, 程塨, 王美君, 等. MAR20: 遙感圖像軍用飛機(jī)目標(biāo)識別數(shù)據(jù)集[J]. 遙感學(xué)報, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.

    YU Wenqi, CHENG Gong, WANG Meijun, et al. MAR20: A benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.
    [24] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. 9th International Conference on Learning Representations, 2021.
  • 加載中
圖(4) / 表(5)
計量
  • 文章訪問數(shù):  361
  • HTML全文瀏覽量:  164
  • PDF下載量:  72
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-12-02
  • 修回日期:  2024-07-04
  • 網(wǎng)絡(luò)出版日期:  2024-07-25
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回