基于非理想條件可重構(gòu)智能超表面輔助無(wú)線攜能通信-非正交多址接入系統(tǒng)通感性能研究
doi: 10.11999/JEIT231395
-
1.
河南理工大學(xué)物理與電子信息學(xué)院 焦作 454003
-
2.
曲阜師范大學(xué)計(jì)算機(jī)學(xué)院 日照 276826
-
3.
河南理工大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院 焦作 454003
Communication and Sensing Performance Analysis of RIS-assisted SWIPT-NOMA System under Non-ideal Conditions
-
1.
School of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo 454003, China
-
2.
College of Computer, Qufu Normal University, Rizhao 276826, China
-
3.
College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China
-
摘要: 為滿足日益增長(zhǎng)的高效通信和可靠感知需求,該文提出可重構(gòu)智能超表面(RIS)輔助無(wú)線攜能通信(SWIPT)-非正交多址接入(NOMA)系統(tǒng),該系統(tǒng)同時(shí)實(shí)現(xiàn)目標(biāo)感知和信息傳輸。考慮非完美連續(xù)干擾消除(SIC)和信道估計(jì)誤差(CEE)兩種非理想因素,分析了所提系統(tǒng)的可靠性、有效性以及雷達(dá)感知性能,分別推導(dǎo)出系統(tǒng)中斷概率(OP)、遍歷速率(ER)、檢測(cè)概率(PoD)以及雷達(dá)估計(jì)信息速率(REIR)的解析表達(dá)式。分析結(jié)果表明:非完美SIC和CEE對(duì)系統(tǒng)的性能有負(fù)面影響;中斷概率隨基站發(fā)射功率的增大而減小,在高信噪比區(qū)域趨于定值;遍歷速率及雷達(dá)估計(jì)信息速率隨基站發(fā)射功率增大而增加,在高信噪比區(qū)域穩(wěn)定于一個(gè)上限值;在不同的檢測(cè)閾值下,檢測(cè)概率隨基站發(fā)射功率的增大而增大;聯(lián)合雷達(dá)檢測(cè)和通信覆蓋概率(JRDCCP)分別隨中斷閾值和檢測(cè)閾值的升高而降低。
-
關(guān)鍵詞:
- 通感一體化 /
- 可重構(gòu)智能超表面 /
- 無(wú)線攜能通信 /
- 非正交多址接入
Abstract: To meet the escalating demands for efficient communication and reliable sensing, a Reconfigurable Intelligent Surface(RIS)-assisted Simultaneous Wireless Information and Power Transfer(SWIPT)-Non-Orthogonal Multiple Access(NOMA) system is proposed in this paper. This system is designed to concurrently achieve target sensing and information transmission. Considering the imperfections of Successive Interference Cancellation (SIC) and Channel Estimation Error (CEE), a comprehensive analysis of the system’s reliability, effectiveness, and radar sensing performance is conducted. Analytical expressions for the Outage Probability (OP), Ergodic Rate (ER), Probability of Detection (PoD), and Radar Estimation Information Rate (REIR) of the system are derived to provide insights into its performance. The analysis results reveal the following findings: the presence of imperfect SIC and CEE adversely impacts the system’s performance; the OP diminishes as the transmitted power of base station increases, eventually converging to a constant value in the high Signal-to-Noise Ratio (SNR) region; both the ER and the REIR increase with the base station’s transmitted power and eventually stabilize at an upper limit value in the high SNR region; the PoD increases with the base station’s transmit power at different detection thresholds; the Joint Radar Detection and Communication Coverage Probability (JRDCCP) decreases with the outage threshold and detection threshold, respectively. -
[1] LIU Ruiqi, LIN Hui, LEE H, et al. Beginning of the journey toward 6G: Vision and framework[J]. IEEE Communications Magazine, 2023, 61(10): 8–9. doi: 10.1109/MCOM.2023.10298069. [2] ZHANG Haijun, WANG Dong, WU Shuqing, et al. USTB 6G: Key technologies and metaverse applications[J]. IEEE Wireless Communications, 2023, 30(5): 112–119. doi: 10.1109/MWC.012.2300077. [3] 肖博, 霍凱, 劉永祥. 雷達(dá)通信一體化研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515. [4] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394. [5] ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519. [6] LI Xingwang, LI Jingjing, LIU Yuanwei, et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.2019.2947670. [7] LIN Zhi, NIU Hehao, AN Kang, et al. Pain without gain: Destructive beamforming from a malicious RIS perspective in IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(5): 7619–7629. doi: 10.1109/JIOT.2023.3316830. [8] CHEN Xiaoming, NG D W K, and CHEN H H. Secrecy wireless information and power transfer: Challenges and opportunities[J]. IEEE Wireless Communications, 2016, 23(2): 54–61. doi: 10.1109/MWC.2016.7462485. [9] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509. [10] OUYANG Chongjun, LIU Yuanwei, and YANG Hongwen. MIMO-ISAC: Performance analysis and rate region characterization[J]. IEEE Wireless Communications Letters, 2023, 12(4): 669–673. doi: 10.1109/LWC.2023.3238842. [11] OUYANG Chongjun, LIU Yuanwei, YANG Hongwen, et al. Integrated Sensing and Communications: A Mutual Information-Based Framework[J]. IEEE Communications Magazine, 2023, 61(5): 26–32. doi: 10.1109/MCOM.001.2200493. [12] ZHUO Yinxiao and WANG Zhaocheng. Performance analysis of ISAC system under correlated communication-sensing channel[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16823–16827. doi: 10.1109/TVT.2023.3294502. [13] ZHANG Chao, YI Wenqiang, LIU Yuanwei, et al. Semi-integrated-sensing-and-communication (Semi-ISaC): From OMA to NOMA[J]. IEEE Transactions on Communications, 2023, 71(4): 1878–1893. doi: 10.1109/TCOMM.2023.3241940. [14] WANG Zhaolin, LIU Yuanwei, MU Xidong, et al. NOMA inspired interference cancellation for integrated sensing and communication[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 3154–3159. doi: 10.1109/ICC45855.2022.9839026. [15] 王夕予, 許曉明, 陳亞軍. 非理想連續(xù)干擾消除下非正交多址接入上行傳輸系統(tǒng)性能分析[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165.WANG Xiyu, XU Xiaoming, and CHEN Yajun. Performances analysis in uplink non-orthogonal multiple access system with imperfect successive interference cancellation[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165. [16] LI Xingwang, ZHANG Junyao, and HAN Congzheng, et al. Reliability and security of CR-STAR-RIS-NOMA assisted IoT networks[J]. IEEE Internet of Things Journal, 2023. doi: 10.1109/JIOT.2023.334037110. [17] MU Xidong, LIU Yuanwei, GUO Li, et al. NOMA-aided joint radar and multicast-unicast communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1978–1992. doi: 10.1109/JSAC.2022.3155524. [18] WANG Zhaolin, LIU Yuanwei, MU Xidong, et al. NOMA empowered integrated sensing and communication[J]. IEEE Communications Letters, 2022, 26(3): 677–681. doi: 10.1109/LCOMM.2022.3140271. [19] OUYANG Chongjun, LIU Yuanwei, and YANG Hongwen. Revealing the impact of SIC in NOMA-ISAC[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1707–1711. doi: 10.1109/LWC.2023.3288633. [20] OUYANG Chongjun, LIU Yuanwei, and YANG Hongwen. On the performance of uplink ISAC systems[J]. IEEE Communications Letters, 2022, 26(8): 1769–1773. doi: 10.1109/LCOMM.2022.3178193. [21] LIU Rang, LI Ming, LUO Honghao, et al. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions[J]. IEEE Wireless Communications, 2023, 30(1): 50–57. doi: 10.1109/MWC.002.2200206. [22] LIN Zhi, NIU Hehao, AN Kang, et al. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3717–3724. doi: 10.1109/TAES.2022.3155711. [23] CHEPURI S P, SHLEZINGER N, LIU Fan, et al. Integrated sensing and communications with reconfigurable intelligent surfaces: From signal modeling to processing[J]. IEEE Signal Processing Magazine, 2023, 40(6): 41–62. doi: 10.1109/MSP.2023.3279986. [24] XING Zhe, WANG Rui, and YUAN Xiaojun. Joint active and passive beamforming design for reconfigurable intelligent surface enabled integrated sensing and communication[J]. IEEE Transactions on Communications, 2023, 71(4): 2457–2474. doi: 10.1109/TCOMM.2023.3244246. [25] WANG Xinyi, FEI Zesong, HUANG Jingxuan, et al. Joint waveform and discrete phase shift design for RIS-assisted integrated sensing and communication system under Cramer-Rao bound constraint[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 1004–1009. doi: 10.1109/TVT.2021.3122889. [26] YANG Ping, YANG Liang, and WANG Shanjin. Performance analysis for RIS-aided wireless systems with imperfect CSI[J]. IEEE Wireless Communications Letters, 2022, 11(3): 588–592. doi: 10.1109/LWC.2021.3136930. [27] 崔苗, 喻鑫, 李學(xué)易, 等. 多用戶多載波無(wú)線攜能通信系統(tǒng)的上下行聯(lián)合資源分配[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1359–1364. doi: 10.11999/JEIT180762.CUI Miao, YU Xin, and LI Xueyi, et al. Joint downlink and uplink resource allocation for multi-user multi-carrier simultaneous wireless information and power transfer systems[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1359–1364. doi: 10.11999/JEIT180762. [28] VARSHNEY L R. Transporting information and energy simultaneously[C]. 2008 IEEE International Symposium on Information Theory, Toronto, Canada, 2008: 1612–1616. doi: 10.1109/ISIT.2008.4595260. [29] LIU Chengpeng, ZHANG Lin, CHEN Zhi, et al. Outage probability analysis in downlink SWIPT-assisted cooperative NOMA systems[J]. Journal of Communications and Information Networks, 2022, 7(1): 72–87. doi: 10.23919/JCIN.2022.9745483. [30] ZHANG Guoan, GU Xiaohui, DUAN Wei, et al. Hybrid time-switching and power-splitting EH relaying for RIS-NOMA downlink[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(1): 146–158. doi: 10.1109/TCCN.2022.3216406. [31] DING Zhiguo, SCHOBER R, and POOR H V. On the impact of phase shifting designs on IRS-NOMA[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1596–1600. doi: 10.1109/LWC.2020.2991116. [32] KRIKIDIS I, TIMOTHEOU S, NIKOLAOU S, et al. Simultaneous wireless information and power transfer in modern communication systems[J]. IEEE Communications Magazine, 2014, 52(11): 104–110. doi: 10.1109/MCOM.2014.6957150. [33] CHIRIYATH A R, PAUL B, JACYNA G M, et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 464–474. doi: 10.1109/TSP.2015.2483485. -