一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

改進(jìn)變分模態(tài)分解與多特征的通信輻射源個體識別方法

劉高輝 席宏恩

劉高輝, 席宏恩. 改進(jìn)變分模態(tài)分解與多特征的通信輻射源個體識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348
引用本文: 劉高輝, 席宏恩. 改進(jìn)變分模態(tài)分解與多特征的通信輻射源個體識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348
LIU Gaohui, XI Hongen. Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348
Citation: LIU Gaohui, XI Hongen. Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348

改進(jìn)變分模態(tài)分解與多特征的通信輻射源個體識別方法

doi: 10.11999/JEIT231348
基金項目: 國家自然科學(xué)基金(61671375)
詳細(xì)信息
    作者簡介:

    劉高輝:男,博士,教授,碩士生導(dǎo)師,主要研究方向為通信信號處理、認(rèn)知無線電、通信輻射源識別和無源探測等

    席宏恩:男,碩士生,研究方向為通信輻射源個體識別

    通訊作者:

    席宏恩 2210320062@stu.xaut.edu.cn

  • 中圖分類號: TN911

Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features

Funds: The National Natural Science Foundation of China (61671375)
  • 摘要: 針對通信輻射源指紋特征難以提取和單一特征識別率不高的問題,并考慮到通信輻射源細(xì)微特征的非線性、非平穩(wěn)特點,該文提出了一種基于改進(jìn)變分模態(tài)分解和多特征的通信輻射源個體識別方法。首先,為了獲得變分模態(tài)分解的分解層數(shù)和懲罰因子的最優(yōu)組合,采用鯨魚優(yōu)化算法對通信輻射源符號波形信號的變分模態(tài)分解方法進(jìn)行了改進(jìn),該方法以序列復(fù)雜度為停止準(zhǔn)則,使每個符號波形信號能夠自適應(yīng)地分解出包含非線性指紋特征的高頻信號分量和數(shù)據(jù)信息的低頻分量;然后,根據(jù)相關(guān)閾值選取能夠最佳表征輻射源非線性特征的高頻信號分量層數(shù),分別對其提取模糊熵、排列熵、Higuchi維數(shù)以及Katz維數(shù)并組成多域聯(lián)合特征向量;最后,通過卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)通信輻射源個體識別分類,利用ORACLE公開數(shù)據(jù)集進(jìn)行實驗。實驗結(jié)果表明:該方法有較高的識別精度且具有良好的抗噪聲性能。
  • 圖  1  通信輻射源發(fā)射機(jī)系統(tǒng)模型

    圖  2  WOA-VMD流程框圖

    圖  3  5個輻射源信號熵特征分布圖

    圖  4  5個輻射源信號分形維數(shù)特征分布圖

    圖  5  通信輻射源個體識別算法流程圖

    圖  6  5個OFDM輻射源信號對應(yīng)的標(biāo)準(zhǔn)化特征值分布圖

    圖  7  測試集混淆矩陣

    圖  8  不同信噪比下算法識別率對比曲線

    圖  9  與現(xiàn)有方法的識別率對比曲線

    表  1  不同層數(shù)在不同信噪比下的識別率(%)

    層數(shù) 信噪比SNR(dB)
    –4 dB –2 dB 0 dB 2 dB 4 dB
    3 66.5 69.5 72.1 73.4 75.3
    4 64.2 71 73.2 80.3 81
    5 67.1 73.8 76 83.1 89
    6 69.5 77.9 82 89.8 96.3
    7 68.8 78 83.3 89.1 92.6
    下載: 導(dǎo)出CSV
  • [1] HUANG Guangquan, YUAN Yingjun, WANG Xiang, et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical and Computer Engineering, 2016, 39(1): 34–41. doi: 10.1109/CJECE.2015.2496143.
    [2] 任東方, 張濤, 韓潔. 結(jié)合ITD與非線性分析的通信輻射源個體識別方法[J]. 信號處理, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010.

    REN Dongfang, ZHANG Tao, and HAN Jie. Approach of specific communication emitter identification combining ITD and nonlinear analysis[J]. Journal of Signal Processing, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010.
    [3] XIE Yang, WANG Shilian, ZHANG Eryang, et al. Specific emitter Identification based on nonlinear complexity of signal[C]. 2016 IEEE International Conference on Signal Processing, Communications and Computing, Hong Kong, China, 2016: 1–6. doi: 10.1109/ICSPCC.2016.7753733.
    [4] LU N, ZHOU T X, WEI J F, et al. Application of a whale optimized variational mode decomposition method based on envelope sample entropy in the fault diagnosis of rotating machinery[J]. Measurement Science and Technology, 2022, 33(1): 015014. doi: 10.1088/1361-6501/ac3470.
    [5] ELMAGHBUB A and HAMDAOUI B. Leveraging hardware-impaired out-of-band information through deep neural networks for robust wireless device classification[J]. arXiv: 2004.11126, 2020. doi: 10.48550/arXiv.2004.11126.
    [6] BREMNES K, MOEN R, YEDURI S R, et al. Classification of UAVs utilizing fixed boundary empirical wavelet sub-bands of RF fingerprints and deep convolutional neural network[J]. IEEE Sensors Journal, 2022, 22(21): 21248–21256. doi: 10.1109/JSEN.2022.3208518.
    [7] ZHANG Junqing, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974–3987. doi: 10.1109/TIFS.2021.3088008.
    [8] HUANG Yi, HU Aiqun, FAN Jiayi, et al. Joint estimation of transmitter IQ imbalance and nonlinearity with multipath in OFDM systems[C]. 2023 IEEE 98th Vehicular Technology Conference, Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333512.
    [9] DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675.
    [10] MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008.
    [11] ZAHID M U, NISAR M D, and SHAH M H. Radio frequency fingerprint extraction based on multiscale approximate entropy[J]. Physical Communication, 2022, 55: 101927. doi: 10.1016/j.phycom.2022.101927.
    [12] BANDT C and POMPE B. Permutation entropy: A natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102. doi: 10.1103/PhysRevLett.88.174102.
    [13] CHEN Weiting, WANG Zhizhong, XIE Hongbo, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266–272. doi: 10.1109/TNSRE.2007.897025.
    [14] KATZ M J. Fractals and the analysis of waveforms[J]. Computers in Biology and Medicine, 1988, 18(3): 145–156. doi: 10.1016/0010-4825(88)90041-8.
    [15] SHAMSI E, AHMADI-PAJOUH M A, and SEIFI ALA T. Higuchi fractal dimension: An efficient approach to detection of brain entrainment to theta binaural beats[J]. Biomedical Signal Processing and Control, 2021, 68: 102580. doi: 10.1016/j.bspc.2021.102580.
    [16] SANKHE K, BELGIOVINE M, ZHOU Fan, et al. No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 165–178. doi: 10.1109/TCCN.2019.2949308.
    [17] DENG Shouyun, HUANG Zhitao, WANG Xiang, et al. Radio frequency fingerprint extraction based on multidimension permutation entropy[J]. International Journal of Antennas and Propagation, 2017, 2017(1): 1538728. doi: 10.1155/2017/1538728.
    [18] SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333.
    [19] HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.3001721.
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數(shù):  184
  • HTML全文瀏覽量:  100
  • PDF下載量:  33
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-09-05
  • 網(wǎng)絡(luò)出版日期:  2024-09-11
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回