一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

可重構(gòu)智能表面輔助的V2I通信系統(tǒng)聯(lián)合波束賦形算法

仲偉志 何藝 段洪濤 萬詩晴 范振雄 朱秋明 林志鵬

仲偉志, 何藝, 段洪濤, 萬詩晴, 范振雄, 朱秋明, 林志鵬. 可重構(gòu)智能表面輔助的V2I通信系統(tǒng)聯(lián)合波束賦形算法[J]. 電子與信息學報, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
引用本文: 仲偉志, 何藝, 段洪濤, 萬詩晴, 范振雄, 朱秋明, 林志鵬. 可重構(gòu)智能表面輔助的V2I通信系統(tǒng)聯(lián)合波束賦形算法[J]. 電子與信息學報, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
ZHONG Weizhi, HE Yi, DUAN Hongtao, WAN Shiqing, FAN Zhenxiong, ZHU Qiuming, LIN Zhipeng. Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
Citation: ZHONG Weizhi, HE Yi, DUAN Hongtao, WAN Shiqing, FAN Zhenxiong, ZHU Qiuming, LIN Zhipeng. Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324

可重構(gòu)智能表面輔助的V2I通信系統(tǒng)聯(lián)合波束賦形算法

doi: 10.11999/JEIT231324 cstr: 32379.14.JEIT231324
基金項目: 江蘇省重點研發(fā)計劃(產(chǎn)業(yè)前瞻與關(guān)鍵核心技術(shù))(BE2022067, BE2022067-1, BE2022067-3),國家自然科學基金(62271250),南京航空航天大學研究生科研與實踐創(chuàng)新計劃(xcxjh20231507)
詳細信息
    作者簡介:

    仲偉志:女,副教授,研究方向為5G中的毫米波通信、波束成形、波束跟蹤技術(shù)和無人機軌跡規(guī)劃

    何藝:女,碩士生,研究方向為車載毫米波通信,可重構(gòu)智能表面聯(lián)合波束賦形

    段洪濤:男,正高級工程師,研究方向為無人機通信與反制,頻譜管理,短波及超短波監(jiān)測等

    萬詩晴:女,碩士生,研究方向為無人機通信,可重構(gòu)智能表面聯(lián)合波束賦形

    范振雄:男,高級工程師,研究方向為無人機通信與反制,超短波干擾定位及查找,短波測向等

    朱秋明:男,教授,研究方向為電磁信號傳播機理、無線信道測量建模應(yīng)用、電磁頻譜語義孿生以及通信裝備智能化測試等

    林志鵬:男,副研究員,研究方向為高維信道參數(shù)估計、大規(guī)模陣列信號處理、無人機通信、頻譜信號感知及重構(gòu)等

    通訊作者:

    仲偉志 zhongwz@nuaa.edu.cn

  • 中圖分類號: TN929.5

Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System

Funds: The Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry) (BE2022067, BE2022067-1, BE2022067-3), The National Natural Science Foundation of China (62271250), The Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics (xcxjh20231507)
  • 摘要: 為解決基于信道先驗知識的聯(lián)合波束賦形方法受限于多變的車輛與交通基礎(chǔ)設(shè)施(V2I)通信場景且信道估計開銷過大等問題,該文結(jié)合環(huán)境態(tài)勢感知,提出一種基于無線傳播鏈路預(yù)測的聯(lián)合波束賦形方法。該方法首先利用射線追蹤模擬器構(gòu)建了可重構(gòu)智能表面(RIS)輔助的V2I毫米波通信系統(tǒng)模型,通過改變環(huán)境態(tài)勢以獲取多樣的無線傳播鏈路數(shù)據(jù)來構(gòu)建數(shù)據(jù)集。其次,使用該數(shù)據(jù)集訓練基于機器學習的無線傳播鏈路預(yù)測模型。最后,在最大發(fā)射功率約束條件下,構(gòu)建了聯(lián)合波束賦形問題模型,并基于預(yù)測結(jié)果采用交替迭代優(yōu)化方法(AIOA)優(yōu)化基站波束賦形矩陣和RIS相移矩陣,以實現(xiàn)同步通信車輛用戶最小信干噪比(SINR)的最大化。仿真結(jié)果驗證了該方法的有效性,通過引入非信道先驗知識驅(qū)動,降低了信道探測開銷,提高了該方法在V2I場景中的可行性。
  • 圖  1  RIS輔助的V2I多用戶毫米波通信系統(tǒng)示意圖

    圖  2  環(huán)境態(tài)勢感知的實現(xiàn)方法示意圖

    圖  3  坐標系示意圖

    圖  4  場景模型以及無線傳播鏈路可視化結(jié)果

    圖  5  基于無線傳播鏈路預(yù)測的聯(lián)合波束賦形方法流程圖

    圖  6  交替迭代優(yōu)化算法流程圖

    圖  7  不同迭代停止精度$ {\beta _2} $下的AIOA性能比較

    圖  8  不同維度RIS的AIOA性能比較

    圖  9  基于不同編碼方式預(yù)測結(jié)果的AIOA性能比較

    圖  10  不同聯(lián)合波束賦形方法的$ {\text{E}}[\min ({\text{SIN}}{{\text{R}}_k})] $性能比較

    圖  11  基于真實信道和預(yù)測信道的AIOA總頻帶利用率比較

    圖  12  定位誤差的影響

    圖  13  不同車輛用戶數(shù)對聯(lián)合波束賦形性能的影響

    1  二分搜索算法

     初始化參數(shù):$ {\beta _1} $, $ P $, $ \delta $, $ {\boldsymbol{\varTheta}} $,$ {\lambda _{\text{u}}} $, $ {\lambda _{\text{l}}} = 0 $
     (1) While $ ({\lambda _{\text{u}}} - {\lambda _{\text{l}}}) \ge {\beta _1} $ do
     (2)  $ t = ({\lambda _{\text{u}}}{\text{ + }}{\lambda _{\text{l}}})/2 $
     (3)  利用半定松弛方法解決問題(P2a)
     (4)  if 當前的$ t $和$ {\boldsymbol{\varTheta}} $可以使得問題(P2a)狀態(tài)為可行 then
     (5)   $ {\lambda _{\text{u}}} = \delta t,{\text{ }}{\lambda _{\text{l}}} = t $
     (6)  else
     (7)   $ {\lambda _{\text{u}}} = t $
     (8)  end if
     (9) end while
     輸出$ t;{\text{ }}{\boldsymbol{X}}_k^{{\text{opt}}},\forall k = \{ 1,2, \cdots ,K\} $
    下載: 導(dǎo)出CSV

    表  1  通用仿真參數(shù)

    參數(shù) 參數(shù)
    M 9 單車道尺寸/(長, 寬)(m) (100, 5)
    N {16, 36} BS坐標/(水平位置, 高度)(m) (50, 3)
    L 2 RIS坐標/(水平位置, 高度)(m) (50, 8)
    K 2 小型車輛尺寸/(長, 寬, 高)(m) (4, 2, 1.5)
    $ \sigma _k^2 $(dB) –110 大型車輛尺寸/(長, 寬, 高)(m) (9, 2.5, 2.5)
    $ \kappa $(dB) 4 信號中心頻率(GHz) 28
    下載: 導(dǎo)出CSV

    表  2  不同編碼方式對應(yīng)的環(huán)境態(tài)勢特征下預(yù)測模型在測試集上的MSE

    T1,1 T2,1 T3,1 T4,1 T5,1 T1,2 T2,2 T3,2 T4,2 T5,2
    TVOM 3.07E–07 4.50E–07 2.82E–04 1.71E–02 1.44E–06 7.07E–04 1.24E–03 5.75E–03 2.18E–02 3.25E–03
    NOCM 1.86E–07 1.96E–07 9.45E–07 3.96E–05 1.21E–06 3.66E–04 8.60E–04 2.73E–04 4.62E–04 1.55E–03
    OLCM,Nv=2 1.22E–07 8.66E–09 7.14E–08 4.04E–07 3.92E–07 2.66E–04 7.75E–04 4.59E–04 5.11E–05 2.13E–03
    下載: 導(dǎo)出CSV
  • [1] CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015.
    [2] WANG Jiadai, LIU Jiajia, and KATO N. Networking and communications in autonomous driving: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1243–1274. doi: 10.1109/COMST.2018.2888904.
    [3] ZHU Yishi, MAO Bomin, and KATO N. Intelligent reflecting surface in 6G vehicular communications: A survey[J]. IEEE Open Journal of Vehicular Technology, 2022, 3: 266–277. doi: 10.1109/OJVT.2022.3177253.
    [4] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [5] LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2.
    [6] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [7] KONG Xiangping, WANG Yu, ZHANG Lei, et al. Active and passive beamforming for IRS-aided vehicle communication[J]. KSII Transactions on Internet and Information Systems, 2023, 17(5): 1503–1515. doi: 10.3837/TIIS.2023.05.011.
    [8] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814.
    [9] OMID Y, SHAHABI S M, PAN C H, et al. Low-complexity robust beamforming design for IRS-aided MISO systems with imperfect channels[J]. IEEE Communications Letters, 2021, 25(5): 1697–1701. doi: 10.1109/LCOMM.2021.3049685.
    [10] WANG Jintao, GONG Shiqi, WU Qingqing, et al. RIS-aided MIMO systems with hardware impairments: Robust beamforming design and analysis[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6914–6929. doi: 10.1109/TWC.2023.3246990.
    [11] CHEN Yuanbin, WANG Ying, and JIAO Lei. Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 928–944. doi: 10.1109/TWC.2021.3100492.
    [12] ALSENWI M, ABOLHASAN M, and LIPMAN J. Intelligent and reliable millimeter wave communications for RIS-aided vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21582–21592. doi: 10.1109/TITS.2022.3190101.
    [13] TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9: 44304–44321. doi: 10.1109/ACCESS.2021.3064073.
    [14] LIN Tian, YU Xianghao, ZHU Yu, et al. Channel estimation for IRS-assisted millimeter-wave MIMO systems: Sparsity-inspired approaches[J]. IEEE Transactions on Communications, 2022, 70(6): 4078–4092. doi: 10.1109/TCOMM.2022.3168876.
    [15] PARK J J, LEE J, LIANG Jinyi, et al. Millimeter wave vehicular blockage characteristics based on 28 GHz measurements[C]. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFALL.2017.8287892.
    [16] WANG Yuyang, KLAUTAU A, RIBERO M, et al. MmWave vehicular beam selection with situational awareness using machine learning[J]. IEEE Access, 2019, 7: 87479–87493. doi: 10.1109/ACCESS.2019.2922064.
    [17] 朱秋明, 華博宇, 毛開, 等. 無人機毫米波信道建模進展和挑戰(zhàn)[J]. 數(shù)據(jù)采集與處理, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004.

    ZHU Qiuming, HUA Boyu, MAO Kai, et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004.
    [18] 朱秋明, 倪浩然, 華博宇, 等. 無人機毫米波信道測量與建模研究綜述[J]. 移動通信, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001.
    [19] KARIPIDIS E, SIDIROPOULOS N D, and LUO Zhiquan. Quality of service and max-Min fair transmit beamforming to multiple cochannel multicast groups[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1268–1279. doi: 10.1109/TSP.2007.909010.
    [20] SIDIROPOULOS N D, DAVIDSON T N, and LUO Zhiquan. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239–2251. doi: 10.1109/TSP.2006.872578.
    [21] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數(shù):  432
  • HTML全文瀏覽量:  211
  • PDF下載量:  102
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-06-13
  • 網(wǎng)絡(luò)出版日期:  2024-06-21
  • 刊出日期:  2024-08-30

目錄

    /

    返回文章
    返回