可重構(gòu)智能表面輔助的V2I通信系統(tǒng)聯(lián)合波束賦形算法
doi: 10.11999/JEIT231324 cstr: 32379.14.JEIT231324
-
1.
南京航空航天大學電磁頻譜空間認知動態(tài)系統(tǒng)工業(yè)與信息化部重點實驗室 南京 211106
-
2.
國家無線電監(jiān)測中心 北京 100144
Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System
-
1.
Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
-
2.
State Radio Monitoring Center, Beijing 100144, China
-
摘要: 為解決基于信道先驗知識的聯(lián)合波束賦形方法受限于多變的車輛與交通基礎(chǔ)設(shè)施(V2I)通信場景且信道估計開銷過大等問題,該文結(jié)合環(huán)境態(tài)勢感知,提出一種基于無線傳播鏈路預(yù)測的聯(lián)合波束賦形方法。該方法首先利用射線追蹤模擬器構(gòu)建了可重構(gòu)智能表面(RIS)輔助的V2I毫米波通信系統(tǒng)模型,通過改變環(huán)境態(tài)勢以獲取多樣的無線傳播鏈路數(shù)據(jù)來構(gòu)建數(shù)據(jù)集。其次,使用該數(shù)據(jù)集訓練基于機器學習的無線傳播鏈路預(yù)測模型。最后,在最大發(fā)射功率約束條件下,構(gòu)建了聯(lián)合波束賦形問題模型,并基于預(yù)測結(jié)果采用交替迭代優(yōu)化方法(AIOA)優(yōu)化基站波束賦形矩陣和RIS相移矩陣,以實現(xiàn)同步通信車輛用戶最小信干噪比(SINR)的最大化。仿真結(jié)果驗證了該方法的有效性,通過引入非信道先驗知識驅(qū)動,降低了信道探測開銷,提高了該方法在V2I場景中的可行性。
-
關(guān)鍵詞:
- V2I通信 /
- 可重構(gòu)智能表面 /
- 聯(lián)合波束賦形 /
- 環(huán)境態(tài)勢感知 /
- 信道預(yù)測
Abstract: In order to address the limitations of the joint beamforming method based on channel prior knowledge, which is constrained by multivariate Vehicle-to-Infrastructure (V2I) communication scenes and suffers from large overhead caused by channel estimation, a wireless propagation link prediction-based joint beamforming method assisted by environmental situation awareness is proposed in this paper. Firstly, a model of Reconfigurable Intelligent Surface (RIS) assisted mmWave communication system for V2I networks is established using a ray tracer. To build a dataset, diverse data of wireless propagation links is obtained by changing the environmental situation. Then, this dataset is used to train a machine learning-based wireless propagation link prediction model. Finally, the joint beamforming problem under the constraint of maximum transmission power is modeled. Additionally, based on the prediction outcome, the beamforming matrix of base station and the phase shift matrix of RIS are optimized using Alternating Iterative Optimization Algorithm (AIOA) to maximize the minimum Signal to Interference plus Noise Ratio (SINR) among synchronous communication vehicle users. Simulation results validate the effectiveness of the proposed method. Introducing non-channel prior knowledge driven reduces channel detection overhead and improves feasibility in applying the proposed method to V2I scenes. -
1 二分搜索算法
初始化參數(shù):$ {\beta _1} $, $ P $, $ \delta $, $ {\boldsymbol{\varTheta}} $,$ {\lambda _{\text{u}}} $, $ {\lambda _{\text{l}}} = 0 $ (1) While $ ({\lambda _{\text{u}}} - {\lambda _{\text{l}}}) \ge {\beta _1} $ do (2) $ t = ({\lambda _{\text{u}}}{\text{ + }}{\lambda _{\text{l}}})/2 $ (3) 利用半定松弛方法解決問題(P2a) (4) if 當前的$ t $和$ {\boldsymbol{\varTheta}} $可以使得問題(P2a)狀態(tài)為可行 then (5) $ {\lambda _{\text{u}}} = \delta t,{\text{ }}{\lambda _{\text{l}}} = t $ (6) else (7) $ {\lambda _{\text{u}}} = t $ (8) end if (9) end while 輸出$ t;{\text{ }}{\boldsymbol{X}}_k^{{\text{opt}}},\forall k = \{ 1,2, \cdots ,K\} $ 下載: 導(dǎo)出CSV
表 1 通用仿真參數(shù)
參數(shù) 值 參數(shù) 值 M 9 單車道尺寸/(長, 寬)(m) (100, 5) N {16, 36} BS坐標/(水平位置, 高度)(m) (50, 3) L 2 RIS坐標/(水平位置, 高度)(m) (50, 8) K 2 小型車輛尺寸/(長, 寬, 高)(m) (4, 2, 1.5) $ \sigma _k^2 $(dB) –110 大型車輛尺寸/(長, 寬, 高)(m) (9, 2.5, 2.5) $ \kappa $(dB) 4 信號中心頻率(GHz) 28 下載: 導(dǎo)出CSV
表 2 不同編碼方式對應(yīng)的環(huán)境態(tài)勢特征下預(yù)測模型在測試集上的MSE
T1,1 T2,1 T3,1 T4,1 T5,1 T1,2 T2,2 T3,2 T4,2 T5,2 TVOM 3.07E–07 4.50E–07 2.82E–04 1.71E–02 1.44E–06 7.07E–04 1.24E–03 5.75E–03 2.18E–02 3.25E–03 NOCM 1.86E–07 1.96E–07 9.45E–07 3.96E–05 1.21E–06 3.66E–04 8.60E–04 2.73E–04 4.62E–04 1.55E–03 OLCM,Nv=2 1.22E–07 8.66E–09 7.14E–08 4.04E–07 3.92E–07 2.66E–04 7.75E–04 4.59E–04 5.11E–05 2.13E–03 下載: 導(dǎo)出CSV
-
[1] CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015. [2] WANG Jiadai, LIU Jiajia, and KATO N. Networking and communications in autonomous driving: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1243–1274. doi: 10.1109/COMST.2018.2888904. [3] ZHU Yishi, MAO Bomin, and KATO N. Intelligent reflecting surface in 6G vehicular communications: A survey[J]. IEEE Open Journal of Vehicular Technology, 2022, 3: 266–277. doi: 10.1109/OJVT.2022.3177253. [4] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737. [5] LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2. [6] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025. [7] KONG Xiangping, WANG Yu, ZHANG Lei, et al. Active and passive beamforming for IRS-aided vehicle communication[J]. KSII Transactions on Internet and Information Systems, 2023, 17(5): 1503–1515. doi: 10.3837/TIIS.2023.05.011. [8] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814. [9] OMID Y, SHAHABI S M, PAN C H, et al. Low-complexity robust beamforming design for IRS-aided MISO systems with imperfect channels[J]. IEEE Communications Letters, 2021, 25(5): 1697–1701. doi: 10.1109/LCOMM.2021.3049685. [10] WANG Jintao, GONG Shiqi, WU Qingqing, et al. RIS-aided MIMO systems with hardware impairments: Robust beamforming design and analysis[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6914–6929. doi: 10.1109/TWC.2023.3246990. [11] CHEN Yuanbin, WANG Ying, and JIAO Lei. Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 928–944. doi: 10.1109/TWC.2021.3100492. [12] ALSENWI M, ABOLHASAN M, and LIPMAN J. Intelligent and reliable millimeter wave communications for RIS-aided vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21582–21592. doi: 10.1109/TITS.2022.3190101. [13] TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9: 44304–44321. doi: 10.1109/ACCESS.2021.3064073. [14] LIN Tian, YU Xianghao, ZHU Yu, et al. Channel estimation for IRS-assisted millimeter-wave MIMO systems: Sparsity-inspired approaches[J]. IEEE Transactions on Communications, 2022, 70(6): 4078–4092. doi: 10.1109/TCOMM.2022.3168876. [15] PARK J J, LEE J, LIANG Jinyi, et al. Millimeter wave vehicular blockage characteristics based on 28 GHz measurements[C]. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFALL.2017.8287892. [16] WANG Yuyang, KLAUTAU A, RIBERO M, et al. MmWave vehicular beam selection with situational awareness using machine learning[J]. IEEE Access, 2019, 7: 87479–87493. doi: 10.1109/ACCESS.2019.2922064. [17] 朱秋明, 華博宇, 毛開, 等. 無人機毫米波信道建模進展和挑戰(zhàn)[J]. 數(shù)據(jù)采集與處理, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004.ZHU Qiuming, HUA Boyu, MAO Kai, et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004. [18] 朱秋明, 倪浩然, 華博宇, 等. 無人機毫米波信道測量與建模研究綜述[J]. 移動通信, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001.ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001. [19] KARIPIDIS E, SIDIROPOULOS N D, and LUO Zhiquan. Quality of service and max-Min fair transmit beamforming to multiple cochannel multicast groups[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1268–1279. doi: 10.1109/TSP.2007.909010. [20] SIDIROPOULOS N D, DAVIDSON T N, and LUO Zhiquan. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239–2251. doi: 10.1109/TSP.2006.872578. [21] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019. -