超大規(guī)模MIMO陣列可視區(qū)域空間分布數(shù)據(jù)集
doi: 10.11999/JEIT231273 cstr: 32379.14.JEIT231273
-
1.
南通大學(xué)交通學(xué)院 南通 226019
-
2.
南通大學(xué)信息科學(xué)技術(shù)學(xué)院 南通 226019
-
3.
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210042
-
4.
東南大學(xué)移動(dòng)通信國家重點(diǎn)實(shí)驗(yàn)室 南京 210096
Visibility Region Spatial Distribution Dataset for XL-MIMO Arrays
-
1.
School of Transportation, Nantong University, Nantong 226019, China
-
2.
School of Information Science and Technology, Nantong University, Nantong 226019, China
-
3.
School of Communications and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210042, China
-
4.
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
-
摘要: 可視區(qū)域(VR)信息可用于降低超大規(guī)模多輸入多輸出(XL-MIMO)系統(tǒng)傳輸設(shè)計(jì)復(fù)雜度,但現(xiàn)有理論分析與傳輸設(shè)計(jì)多基于簡化的VR統(tǒng)計(jì)分布模型。為評估分析XL-MIMO在實(shí)際物理傳播場景中的性能,該文公開了XL-MIMO陣列VR空間分布數(shù)據(jù)集,其由環(huán)境參數(shù)設(shè)置、射線追蹤仿真、天線場強(qiáng)數(shù)據(jù)預(yù)處理和VR判定準(zhǔn)則等步驟構(gòu)建。該數(shù)據(jù)集針對典型城區(qū)無線傳播場景,建立了用戶位置采樣與場強(qiáng)數(shù)據(jù)、VR數(shù)據(jù)之間的關(guān)聯(lián),總數(shù)據(jù)條目數(shù)量達(dá)上億級。進(jìn)一步對其中VR形態(tài)、VR分布進(jìn)行了可視化展示與分析,并以基于VR的XL-MIMO用戶接入?yún)f(xié)議為例,利用該數(shù)據(jù)集對其在真實(shí)傳播場景中的性能進(jìn)行了仿真,為該數(shù)據(jù)集的應(yīng)用提供了典型樣例。
-
關(guān)鍵詞:
- 超大規(guī)模MIMO /
- 可視區(qū)域 /
- 射線追蹤 /
- 能量集中度 /
- 子陣列
Abstract: The Visibility Region (VR) information can be used to reduce the complexity in transmission design of EXtremely Large-scale massive Multiple-Input Multiple-Output (XL-MIMO) systems. Existing theoretical analysis and transmission design are mostly based on simplified VR models. In order to evaluate and analyze the performance of XL-MIMO in realistic propagation scenarios, this paper discloses a VR spatial distribution dataset for XL-MIMO systems, which is constructed by steps including environmental parameter setting, ray tracing simulation, field strength data preprocessing and VR determination. For typical urban scenarios, the dataset establishes the connections between user locations, field strength data, and VR data, with a total number of hundreds of millions of data entries. Furthermore, the VR distribution is visualized and analyzed, and a VR-based XL-MIMO user access protocol is taken as an example usecase, with its performance being evaluated with the proposed VR dataset. -
表 1 仿真參數(shù)設(shè)置
參數(shù) 參數(shù)設(shè)置 站點(diǎn)位置 場景內(nèi)最高建筑物表面,site1: 150 m, site2: 50 m 天線類型及詳細(xì)參數(shù) 每個(gè)站點(diǎn)200根天線(10×20),天線間距3 m,全向天線,頻率 4800 MHz,發(fā)送功率1 W天線序號 site1: 011~210,site2: 20011 ~20210 場強(qiáng)空間分辨率 1 m 用戶高度 高度統(tǒng)一為1.5 m 傳播模型 智能射線追蹤 下載: 導(dǎo)出CSV
1 天線能量集中度VR判定算法
輸入:用戶位置j天線場強(qiáng)數(shù)據(jù)$ {d_j}\left[ i \right] $,其中i表示天線標(biāo)號;能量集中度P;初始化VR集合Sj為空;天線總數(shù)Nt 輸出:用戶j的VR集合Sj 1 計(jì)算用戶j所在位置的場強(qiáng)和:${F^j} = \sum\nolimits_{i = 1}^{{N_{\mathrm{t}}}} {{d_j}\left[ i \right]} $; 2 用戶j所能接收到的天線陣列上P (%)的能量,即閾值:${F^{j,P}} = {F^j} \times P$; 3 對數(shù)組$ {d_j}\left[ i \right] $按場強(qiáng)降序排序,生成新的2維數(shù)組${d'_j}\left[ {i,k} \right]$,其中i表示重新排序后的索引,k表示排序前天線的標(biāo)號; 4 for (int t=0; t<=Nt; t++) 5 ${{\mathrm{sum}}} = {\text{sum}} + {d'_j}\left[ {i,k} \right]$; 6 天線k加入集合Sj; 7 if ${{\mathrm{sum}}} > {F^{j,P}}$ 8 Break; 9 返回VR Sj。 下載: 導(dǎo)出CSV
表 2 數(shù)據(jù)集匯總表
數(shù)據(jù)集類型 數(shù)據(jù)集名稱 數(shù)據(jù)集含義 數(shù)據(jù)量 天線場強(qiáng)空間分布數(shù)據(jù)集 Antenna_site1 site1天線場強(qiáng)信息 60071000 Antenna_site2 site2天線場強(qiáng)信息 60071000 VRD 基于天線能量集中度的VRD S1_Antenna_user_80 site1下能量集中度80%的用戶位置-天線VR構(gòu)成信息 7702400 S2_Antenna_user_80 site2下能量集中度80%的用戶位置-天線VR構(gòu)成信息 3515400 S1_Antenna_VR site1峰值下天線VR分布 464 S2_Antenna_VR site2峰值下天線VR分布 279 基于子陣列能量集中度的VRD Antenna_subarray 天線-子陣列映射數(shù)據(jù)集 400 S1_user_sub_power_80 site1下能量集中度80%的用戶位置-子陣列VR構(gòu)成信息 547280 S2_user_sub_power_80 site2下能量集中度80%的用戶位置-子陣列VR構(gòu)成信息 725660 S1_Subarray_VR site1峰值下子陣列VR分布 27353 S2_Subarray_VR site2峰值下子陣列VR分布 36284 下載: 導(dǎo)出CSV
-
[1] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761. [2] WANG Zhe, ZHANG Jiayi, DU Hongyang, et al. Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions[J]. IEEE Wireless Communications. doi: 10.1109/MWC.132.2200443. [3] 張軍, 陸佳程, 劉同順, 等. 超大規(guī)模MIMO系統(tǒng)中基于交疊可視區(qū)域的功率分配方法[J]. 電子與信息學(xué)報(bào), 2023, 45(12): 4262–4270. doi: 10.11999/JEIT221468.ZHANG Jun, LU Jiacheng, LIU Tongshun, et al. Power allocation method based on overlapping visibility region in extra large scale MIMO system[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4262–4270. doi: 10.11999/JEIT221468. [4] CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400. [5] IIMORI H, TAKAHASHI T, ISHIBASHI K, et al. Joint activity and channel estimation for extra-large MIMO systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7253–7270. doi: 10.1109/TWC.2022.3157271. [6] 丁瑞, 錢曉涵, 劉道華, 等. 超大規(guī)模MIMO信道測量建模研究綜述[J]. 電訊技術(shù), 2022, 62(7): 1014–1022. doi: 10.3969/j.issn.1001-893x.2022.07.028.DING Rui, QIAN Xiaohan, LIU Daohua, et al. Survey of channel measurement and modeling for extra-large scale massive MIMO[J]. Telecommunication Engineering, 2022, 62(7): 1014–1022. doi: 10.3969/j.issn.1001-893x.2022.07.028. [7] DE CARVALHO E, ALI A, AMIRI A, et al. Non-stationarities in extra-large-scale massive MIMO[J]. IEEE Wireless Communications, 2020, 27(4): 74–80. doi: 10.1109/MWC.001.1900157. [8] ZHANG Jingjing, ZHANG Jun, HAN Yu, et al. Average spectral efficiency for TDD-based non-stationary XL-MIMO with VR estimation[C]. The 14th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2022: 973–977. doi: 10.1109/WCSP55476.2022.10039284. [9] ALI A, DE CARVALHO E, and HEATH R W. Linear receivers in non-stationary massive MIMO channels with visibility regions[J]. IEEE Wireless Communications Letters, 2019, 8(3): 885–888. doi: 10.1109/LWC.2019.2898572. [10] MARINELLO FILHO J C, BRANTE G, SOUZA R D, et al. Exploring the non-overlapping visibility regions in XL-MIMO random access and scheduling[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6597–6610. doi: 10.1109/TWC.2022.3151329. [11] RODRIGUES V C, AMIRI A, ABR?O T, et al. Low-complexity distributed XL-MIMO for multiuser detection[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145378. [12] TIAN Jiachen, HAN Yu, JIN Shi, et al. Low-overhead localization and VR identification for subarray-based ELAA systems[J]. IEEE Wireless Communications Letters, 2023, 12(5): 784–788. doi: 10.1109/LWC.2023.3244000. [13] 楊小龍, 佘媛, 周牧, 等. 基于CSI的三維聯(lián)合參數(shù)估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2022, 44(2): 627–636. doi: 10.11999/JEIT200698.YANG Xiaolong, SHE Yuan, ZHOU Mu, et al. 3D parameter estimation method based on CSI[J]. Journal of Electronics & Information Technology, 2022, 44(2): 627–636. doi: 10.11999/JEIT200698. [14] ALKHATEEB A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications[EB/OL].https://doi.org/10.48550/arXiv.1902.06435, 2023. [15] ARNOLD M, HOYDIS J, and TEN BRINK S. Novel massive MIMO channel sounding data applied to deep learning-based indoor positioning[C]. The 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 2019: 1–6. doi: 10.30420/454862021. [16] DU Xu and SABHARWAL A. Massive MIMO channels with inter-user angle correlation: Open-access dataset, analysis and measurement-based validation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1602–1616. doi: 10.1109/TVT.2021.3131606. [17] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997. [18] TRINDADE I, MüLLER F, and KLAUTAU A. Accuracy analysis of the geometrical approximation of MIMO channels using ray-tracing[C]. 2020 IEEE Latin-American Conference on Communications, Santo Domingo, Dominican Republic, 2020: 1–5. doi: 10.1109/LATINCOM50620.2020.9282262. [19] LIN Zhijian, DU Xiaojiang, CHEN H H, et al. Millimeter-wave propagation modeling and measurements for 5G mobile networks[J]. IEEE Wireless Communications, 2019, 26(1): 72–77. doi: 10.1109/MWC.2019.1800035. [20] SHIKHANTSOV S, GUEVARA A, THIELENS A, et al. Spatial correlation in indoor massive MIMO: Measurements and ray tracing[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 903–907. doi: 10.1109/LAWP.2021.3066607. [21] HARON A S, MANSOR Z, AHMAD I, et al. The performance of 2.4GHz and 5GHz Wi-Fi router placement for signal strength optimization using Altair WinProp[C]. The IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications, Bandung, Indonesia, 2021: 25–29. doi: 10.1109/ICSIMA50015.2021.9526299. [22] DE SOUZA J H I, AMIRI A, ABR?O T, et al. Quasi-distributed antenna selection for spectral efficiency maximization in subarray switching XL-MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6713–6725. doi: 10.1109/TVT.2021.3081462. [23] LIU Daohua, WANG Jue, LI Ye, et al. Location-based visible region recognition in extra-large massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8186–8191. doi: 10.1109/TVT.2023.3242615. -