混合可重構(gòu)智能表面和人工噪聲輔助的物理層安全通信
doi: 10.11999/JEIT231235 cstr: 32379.14.JEIT231235
-
1.
河海大學(xué)江蘇省輸配電裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室 常州 213251
-
2.
河海大學(xué)信息科學(xué)與工程學(xué)院 常州 213251
Physical Layer Security for Hybrid Reconfigurable Intelligent Surface and Artificial Noise Assisted Communication
-
1.
Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology, Hohai University, Changzhou 213251, China
-
2.
College of Information Science and Engineering, Hohai University, Changzhou 213251, China
-
摘要: 針對可重構(gòu)智能表面(Reconfigurable Intelligent Reflecting Surface, RIS)輔助的物理層安全通信,該文設(shè)計(jì)了基于混合有源-無源RIS和人工噪聲(Artificial Noise, AN)輔助的安全傳輸方案??紤]基站和RIS的功率約束以及RIS無源反射元件的反射系數(shù)恒模約束,以最大化系統(tǒng)安全傳輸速率為目標(biāo),構(gòu)建基站發(fā)射波束成形、AN波束向量、RIS反射系數(shù)矩陣聯(lián)合優(yōu)化問題。使用交替優(yōu)化(Alternating Optimization, AO)、權(quán)值最小均方誤差(Weighted Minimum Mean Square Error, WMMSE)和半定松弛(Semi-definite Relaxation, SDR)算法,求解所構(gòu)建的變量高度耦合的非凸優(yōu)化問題。仿真結(jié)果表明,混合RIS輔助安全傳輸方案,能夠有效提高系統(tǒng)的安全速率,與無源RIS相比,能夠有效克服“雙衰落”效應(yīng)導(dǎo)致的安全速率降低,與有源RIS相比,具有更高的能量效率。
-
關(guān)鍵詞:
- 可重構(gòu)智能表面 /
- 混合有源-無源RIS /
- 物理層安全 /
- 人工噪聲 /
- 交替優(yōu)化 /
- 半定松弛
Abstract: A hybrid active-passive Reconfigurable Intelligent reflecting Surface (RIS) and Artificial Noise (AN) based transmission scheme is proposed for the secret communication of the RIS assisted wireless communication system. Aiming at maximizing the secrecy rate, a joint optimization problem over the transmit beamforming and AN vector of the base station and the reflecting coefficient matrix of the RIS is formulated. Then, the Alternating Optimization (AO) method, the weighted Minimum Mean Square Error (MMSE) algorithm and the semi-definite relaxation algorithm are proposed to solve this non-convex optimization problem with highly-coupled variables. The simulation results show that the proposed hybrid RIS and AN based scheme can efficiently improve the secrecy rate of the considered system and overcome the secrecy rate decrease due to the "double fading" effect of the passive RIS. Compared with the full active RIS, the proposed scheme achieves higher energy efficiency. -
1 交替優(yōu)化求解算法
1:Initialize 2:給定初始可行解 {\boldsymbol{w}}^{0},\;{\boldsymbol{v}}^{0},\;{\boldsymbol{\varPhi}}^{\text{0}} ,設(shè)置迭代次數(shù) i =0、收斂精度 \delta 、初始輔助變量 {}_{\text{1}}^{\text{0}}=1,\;{}_{\text{2}}^{\text{0}}=1,\;{{R}}^{0}=f\left({\boldsymbol{w}}^{0},\;{\boldsymbol{v}}^{0},\;{\boldsymbol{\varPhi}}^{\text{0}}\right) 3:repeat 4: 給定 {{\boldsymbol{\varPhi}}}^{i} , {}_{\text{1}}^{i} , {}_{\text{2}}^{i} ,根據(jù)3.2節(jié)所述方法求解問題(P2-2),并對得出的解進(jìn)行處理,從而更新 {\boldsymbol{w}}^{i+1}、{\boldsymbol{v}}^{i+1} 5: 給定 {\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1} , {}_{\text{1}}^{i} , {}_{\text{2}}^{{i}} 根據(jù)3.3節(jié)所述方法求解問題(P3-2),對其解進(jìn)行高斯隨機(jī)化,得到近似解,進(jìn)而更新 {\boldsymbol{\varPhi}}^{i+1} 6: 給定 {\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1} , {\boldsymbol{\varPhi}}^{i+1} ,根據(jù)3.4節(jié)所述方法更新輔助變量 {}_{\text{1}}^{i+1} , {}_{\text{2}}^{i+1} 7: {{R}}^{i+1}=f\left({\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1},\;{\boldsymbol{\varPhi}}^{i+1}\right) 8: i=i+1 9:until \dfrac{{{R}}^{\boldsymbol{i}}-{{R}}^{\boldsymbol{i}-1}}{{{R}}^{\boldsymbol{i}}} < \delta 下載: 導(dǎo)出CSV
-
[1] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025. [2] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107. [3] DONG Lun, HAN Zhu, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875–1888. doi: 10.1109/TSP.2009.2038412. [4] BLOCH M, HAYASHI M, and THANGARAJ A. Error-control coding for physical-layer secrecy[J]. Proceedings of the IEEE, 2015, 103(10): 1725–1746. doi: 10.1109/JPROC.2015.2463678. [5] FANG Sisai, CHEN Gaojie, ABDULLAH Z, et al. Intelligent Omni surface-assisted secure MIMO communication networks with artificial noise[J]. IEEE Communications Letters, 2022, 26(6): 1231–1235. doi: 10.1109/LCOMM.2022.3159575. [6] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685. [7] CHEN Siyu, JI Yancheng, JIANG Yan, et al. Optimal RIS allocations for PLS with uncertain jammer and eavesdropper[J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 927–936. doi: 10.1109/TCE.2023.3292842. [8] ZHANG Zhe, ZHANG Chensi, JIANG Chengjun, et al. Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4451–4463. doi: 10.1109/TVT.2021.3068774. [9] YOU Li, XIONG Jiayuan, NG D W K, et al. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 1407–1421. doi: 10.1109/TSP.2020.3047474. [10] LI Guyue, HU Lei, STAAT P, et al. Reconfigurable intelligent surface for physical layer key generation: Constructive or destructive?[J]. IEEE Wireless Communications, 2022, 29(4): 146–153. doi: 10.1109/MWC.007.2100545. [11] LI Guyue, SUN Chen, XU Wei, et al. On maximizing the sum secret key rate for reconfigurable intelligent surface-assisted multiuser systems[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 211–225. doi: 10.1109/TIFS.2021.3138612. [12] LV Weigang, BAI Jiale, YAN Qingli, et al. RIS-assisted green secure communications: Active RIS or passive RIS?[J]. IEEE Wireless Communications Letters, 2023, 12(2): 237–241. doi: 10.1109/LWC.2022.3221609. [13] LONG Ruizhe, LIANG Yingchang, PEI Yiyang, et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962–4975. doi: 10.1109/TWC.2021.3064024. [14] KHOSHAFA M H, NGATCHED T M N, AHMED M H, et al. Active reconfigurable intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters, 2021, 25(11): 3699–3703. doi: 10.1109/LCOMM.2021.3110714. [15] DONG Limeng, WANG Huiming, and BAI Jiale. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2181–2186. doi: 10.1109/TVT.2021.3135498. [16] DONG Limeng and YAN Wanyu. Active reconfigurable intelligent surface (RIS) aided secure wireless transmission under a shared power source between transmitter and RIS[C]. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2022: 996–1000. doi: 10.1109/WCSP55476.2022.10039260. [17] ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752. [18] YANG Songjie, LYU Wanting, XIU Yue, et al. Active 3D double-RIS-aided multi-user communications: Two-timescale-based separate channel estimation via Bayesian learning[J]. IEEE Transactions on Communications, 2023, 71(6): 3605–3620. doi: 10.1109/TCOMM.2023.3265115. [19] NGUYEN N T, VU Q D, LEE K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6228–6244. doi: 10.1109/TVT.2022.3158686. [20] NGUYEN N T, NGUYEN V D, WU Qingqing, et al. Hybrid active-passive reconfigurable intelligent surface-assisted multi-user MISO systems[C]. 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 2022: 1–5. doi: 10.1109/SPAWC51304.2022.9833956. [21] SCHROEDER R, HE Jiguang, and JUNTTI M. Passive RIS vs. hybrid RIS: A comparative study on channel estimation[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9448802. [22] SCHROEDER R, HE Jiguang, BRANTE G, et al. Two-stage channel estimation for hybrid RIS assisted MIMO systems[J]. IEEE Transactions on Communications, 2022, 70(7): 4793–4806. doi: 10.1109/TCOMM.2022.3176654. [23] NGO K H, NGUYEN N T, DINH T Q, et al. Low-latency and secure computation offloading assisted by hybrid relay-reflecting intelligent surface[C]. 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2021: 306–311. doi: 10.1109/ATC52653.2021.9598322. [24] NGUYEN N T, VU Q D, LEE K, et al. Spectral efficiency optimization for hybrid relay-reflecting intelligent surface[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473487. [25] SHI Qingjiang, XU Weiqiang, WU Jinsong, et al. Secure beamforming for MIMO broadcasting with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2841–2853. doi: 10.1109/TWC.2015.2395414. [26] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019. [27] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721. -