面向 6G 的多維擴展通感一體化研究綜述
doi: 10.11999/JEIT231045
-
1.
大連理工大學(xué)信息與通信工程學(xué)院 大連 116024
-
2.
中國通信企業(yè)協(xié)會 北京 100846
-
3.
哈爾濱工業(yè)大學(xué)(威海)信息科學(xué)與工程學(xué)院 威海 264209
An Overview on Multi-dimensional Expanded Integrated Sensing and Communication for 6G
-
1.
School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
-
2.
China Association of Communications Enterprises, Beijing 100846, China
-
3.
School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
-
摘要: 面對第6代移動通信(6G)網(wǎng)絡(luò)立體覆蓋的互聯(lián)感知需求和無線設(shè)備廣泛接入造成的頻譜稀缺問題,基于無人機(UAV)的機動性和智能反射面(IRS)重構(gòu)無線傳播環(huán)境特性的多維擴展通感一體化可實現(xiàn)立體網(wǎng)絡(luò)空間中通信和感知功能的相互協(xié)同,有效提升頻譜效率和硬件資源的利用率,滿足6G萬物智聯(lián)的無線網(wǎng)絡(luò)愿景。該文針對6G多維擴展通感一體化網(wǎng)絡(luò)架構(gòu)展開綜述。首先,概述了 6G網(wǎng)絡(luò)愿景和通感一體化的理論基礎(chǔ),并討論基于UAV和IRS多維擴展通感一體化的應(yīng)用場景、發(fā)展趨勢和性能指標(biāo)。然后,探討了超大規(guī)模多輸入多輸出天線、太赫茲、無線攜能通信、人工智能、隱蔽通信和有源反射面等6G關(guān)鍵前沿技術(shù)在基于無人機和智能反射面多維擴展通感一體化網(wǎng)絡(luò)中的潛在應(yīng)用。最后,展望了未來6G多維擴展通感一體化的發(fā)展方向及關(guān)鍵技術(shù)挑戰(zhàn)。Abstract: Facing the demand for interconnectivity sensing of three-dimensional coverage for the sixth-Generation mobile communication (6G) networks and the spectrum scarcity issue caused by the widespread access of wireless devices, the multi-dimensional expanded Integrated Sensing and Communication (ISAC), based on Unmanned Aerial Vehicles (UAV) and Intelligent Reflecting Surfaces (IRS), is capable of achieving synergistic communication and sensing functions in the three-dimensional network space. This can effectively enhance spectrum efficiency, hardware resource utilization, and align with the wireless network vision of 6G Internet of Everything. This paper provides an overview of the architecture for the 6G multi-dimensional expanded ISAC. Firstly, it summarizes the theoretical foundations of the 6G network vision and ISAC networks, and the application scenarios, development trends, and performance indicators of multi-dimensional expanded ISAC based on UAV and IRS are discussed. Then, it investigates the potential applications of 6G key technologies, such as ultra-massive multiple-input and multiple-output antenna, terahertz, simultaneous wireless information and power transfer, artificial intelligence, covert communication, and active IRS, in multi-dimensional expanded ISAC networks based on UAV and IRS. Finally, the future development direction and key technical challenges of 6G multi-dimensional expanded ISAC sre prospected.
-
表 1 基于UAV和IRS多維擴展的通感一體化網(wǎng)絡(luò)應(yīng)用場景
場景/應(yīng)用分類 同步成像與環(huán)境重構(gòu) 高精度定位與跟蹤 增強人類感官 動作和表情識別 智慧工廠 區(qū)域檢測和環(huán)境感知 設(shè)備定位和安裝 自動化測量和控制 產(chǎn)品質(zhì)量檢測 垂直行業(yè) 智慧農(nóng)業(yè) 作物生理監(jiān)測和生產(chǎn) 自動化收取和存儲 種植環(huán)境檢測 作物質(zhì)量監(jiān)管 智慧交通 3D道路成像 無人駕駛與輔助駕駛 雨霧天氣路況監(jiān)測 安全駕駛 環(huán)境監(jiān)測 無人機集群管理 水利水文監(jiān)測 污染與空氣質(zhì)量檢測 殘障保障服務(wù) 公共服務(wù) 公共安全 災(zāi)害應(yīng)急管理和疏散 交通運輸安全 無接觸安全檢測 突發(fā)事件預(yù)測 城市管理 城市環(huán)境監(jiān)督 城市文明監(jiān)察 建筑安全風(fēng)險檢測 全時段監(jiān)控 災(zāi)難救援 災(zāi)情評估與災(zāi)后重建 人員定位與物資投送 災(zāi)區(qū)環(huán)境檢測 人員搜救 極端場景 戰(zhàn)場支援 實時情報獲取 精確打擊支持 敵對目標(biāo)監(jiān)視和偵測 敵情偵測與分析 應(yīng)用 太空探測 地球和大氣監(jiān)測 太空垃圾探測 星際空間探測 航天員健康檢測 海洋勘探 海洋資源勘探 海上巡邏與航行安全 海洋氣象和氣候監(jiān)測 海洋生態(tài)監(jiān)測 下載: 導(dǎo)出CSV
表 2 現(xiàn)有ISAC和波形設(shè)計簡要總結(jié)
參考文獻 ISAC波形設(shè)計 技術(shù)原理 優(yōu)點 缺點 文獻[26, 27] 以感知為基礎(chǔ)的設(shè)計 將通信信號調(diào)制或引入感知系統(tǒng)中,在不影響
感知功能情況下實現(xiàn)通信功能與感知系統(tǒng)高度兼容 低數(shù)據(jù)速率 文獻[28, 29] 以通信為基礎(chǔ)的設(shè)計 利用通信波形、協(xié)議和架構(gòu)進行感知,
通過目標(biāo)回波提取感知信息與通信系統(tǒng)高度兼容 感知性能差 文獻 [30–32] 通感一體聯(lián)合優(yōu)
化設(shè)計兼顧通信和感知的需求和性能指標(biāo) 高性能感知和通信 設(shè)計復(fù)雜度高 下載: 導(dǎo)出CSV
表 3 基于UAV和IRS的多維擴展通感一體化網(wǎng)絡(luò)性能指標(biāo)
性能分類 性能指標(biāo) 具體要求 通信性能 帶寬和速率
穩(wěn)定性傳輸數(shù)據(jù)的速度和容量,較大的帶寬能夠支持高分辨率圖像、視頻等大數(shù)據(jù)傳輸
保障UAV在高速運動和復(fù)雜環(huán)境中通信連接的可靠性,防止干擾和信號丟失感知性能 感知范圍
感知精度感知功能的有效覆蓋區(qū)域,UAV和IRS可提供更廣泛的環(huán)境信息
感知系統(tǒng)識別目標(biāo)和獲取環(huán)境信息的準(zhǔn)確度和可靠性,影響系統(tǒng)的決策能力多源數(shù)據(jù)
融合性能數(shù)據(jù)融合精度
傳輸時延不同傳感器數(shù)據(jù)融合后的信息準(zhǔn)確性,能夠提供更全面、準(zhǔn)確的環(huán)境認知
確保感知數(shù)據(jù)的快速獲取和信息交互效率,提高系統(tǒng)的實時決策能力數(shù)據(jù)質(zhì)量
和準(zhǔn)確性魯棒性
隱私和安全性在干擾和突發(fā)情況下,UAV的移動性和IRS環(huán)境重構(gòu)能力保障系統(tǒng)功能的彈性設(shè)計
提供安全的數(shù)據(jù)傳輸和存儲機制,保障敏感信息的安全傳輸網(wǎng)絡(luò)協(xié)
同性能自適應(yīng)性
能耗和計算資源基于IRS-UAV的無線網(wǎng)絡(luò)需實現(xiàn)空地網(wǎng)絡(luò)的相互協(xié)同,適應(yīng)環(huán)境和任務(wù)需求的變化
保持低能耗,確保感知和數(shù)據(jù)處理和計算不過度消耗電力,提高UAV的續(xù)航能力下載: 導(dǎo)出CSV
-
[1] 易芝玲, 王森, 韓雙鋒, 等. 從5G到6G的思考: 需求、挑戰(zhàn)與技術(shù)發(fā)展趨勢[J]. 北京郵電大學(xué)學(xué)報, 2020, 43(2): 1–9. doi: 10.13190/j.jbupt.2020-024.YI Zhiling, WANG Sen, HAN Shuangfeng, et al. From 5G to 6G: Requirements, challenges and technical trends[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 1–9. doi: 10.13190/j.jbupt.2020-024. [2] LIU Guangyi, HUANG Yuhong, LI Na, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92–104. doi: 10.23919/JCC.2020.09.008. [3] ZHANG Shunqing, XIANG Chenlu, and XU Shugong. 6G: Connecting everything by 1000 times price reduction[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 107–115. doi: 10.1109/OJVT.2020.2980003. [4] HAN Chong, WANG Yiqin, LI Yuanbo, et al. Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1670–1707. doi: 10.1109/COMST.2022.3182539. [5] 趙亞軍, 郁光輝, 徐漢青. 6G移動通信網(wǎng)絡(luò): 愿景、挑戰(zhàn)與關(guān)鍵技術(shù)[J]. 中國科學(xué): 信息科學(xué), 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. SCIENTIA SINICA Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033. [6] AKAN O B and ARIK M. Internet of radars: Sensing versus sending with joint radar-communications[J]. IEEE Communications Magazine, 2020, 58(9): 13–19. doi: 10.1109/MCOM.001.1900550. [7] LIU Rang, LI Ming, LUO Honghao, et al. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions[J]. IEEE Wireless Communications, 2023, 30(1): 50–57. doi: 10.1109/MWC.002.2200206. [8] 張嘉慧, 王新奕, 費澤松, 等. 6G通感融合網(wǎng)絡(luò)中的物理層安全: 機遇與挑戰(zhàn)[J]. 移動通信, 2023, 47(3): 55–61. doi: 10.3969/j.issn.1006-1010.20230204-0002.ZHANG Jiahui, WANG Xinyi, FEI Zesong, et al. Physical layer security in 6G integrated sensing and communication systems: Opportunities and challenges[J]. Mobile Communications, 2023, 47(3): 55–61. doi: 10.3969/j.issn.1006-1010.20230204-0002. [9] 陳新穎, 盛敏, 李博, 等. 面向6G的無人機通信綜述[J]. 電子與信息學(xué)報, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789. [10] 朱政宇, 王梓晅, 徐金雷, 等. 智能反射面輔助的未來無線通信: 現(xiàn)狀與展望[J]. 航空學(xué)報, 2022, 43(2): 025014. doi: 10.7527/s1000-6893.2021.25014.ZHU Zhengyu, WANG Zixuan, XU Jinlei, et al. Future wireless communication assisted by intelligent reflecting surface: State of art and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 025014. doi: 10.7527/s1000-6893.2021.25014. [11] 朱政宇, 徐金雷, 孫鋼燦, 等. 基于IRS輔助的SWIPT物聯(lián)網(wǎng)系統(tǒng)安全波束成形設(shè)計[J]. 通信學(xué)報, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000?436x.2021060.ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT internet of things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000?436x.2021060. [12] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528. [13] HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507. [14] SU Yuhua, PANG Xiaowei, CHEN Shanzhi, et al. Spectrum and energy efficiency optimization in IRS-assisted UAV networks[J]. IEEE Transactions on Communications, 2022, 70(10): 6489–6502. doi: 10.1109/TCOMM.2022.3201122. [15] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [16] 伍光新, 姚元, 祁琳琳. 雷達通信波形一體化發(fā)展綜述[J]. 現(xiàn)代雷達, 2021, 43(9): 37–45. doi: 10.16592/j.cnki.1004-7859.2021.09.007.WU Guangxin, YAO Yuan, and QI Linlin. An overview on radar-communication integration of waveform[J]. Modern Radar, 2021, 43(9): 37–45. doi: 10.16592/j.cnki.1004-7859.2021.09.007. [17] IMT-2030(6G)推進組. 6G網(wǎng)絡(luò)架構(gòu)愿景與關(guān)鍵技術(shù)展望白皮書[R]. 2021.IMT-2030 (6G) Promotion Group. 6G Network Architecture Vision and Key Technology Outlook White Paper[R]. 2021. [18] CUI Yanpeng, FENG Zhiyong, ZHANG Qixun, et al. Toward trusted and swift UAV communication: ISAC-enabled dual identity mapping[J]. IEEE Wireless Communications, 2023, 30(1): 58–66. doi: 10.1109/MWC.003.2200207. [19] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623. [20] SHAO Xiaodan, YOU Changsheng, MA Wenyan, et al. Target sensing with intelligent reflecting surface: Architecture and performance[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2070–2084. doi: 10.1109/JSAC.2022.3155546. [21] YOU Changsheng, KANG Zhenyu, ZENG Yong, et al. Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV[J]. IEEE Wireless Communications, 2021, 28(6): 138–144. doi: 10.1109/MWC.001.2100148. [22] PANG Xiaowei, ZHAO Nan, TANG Jie, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design[J]. IEEE Transactions on Communications, 2022, 70(2): 1140–1152. doi: 10.1109/TCOMM.2021.3136563. [23] 李國琳, 郭文彬. 雷達通信一體化波形設(shè)計綜述[J]. 移動通信, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006.LI Guolin and GUO Wenbin. Waveform design for integrated radar and communication: A survey[J]. Mobile Communications, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006. [24] BAYESTEH A, 何佳, 陳雁, 等. 通信感知一體化——從概念到實踐[EB/OL].https://www.huawei.com/cn/huaweitech/future-technologies/integrated-sensing-communication-concept-practice, 2022.BAYESTEH A, HE Jia, CHEN Yan, et al. Integration of communication and perception-from concept to practice[EB/OL].https://www.huawei.com/cn/huaweitech/future-technologies/integrated-sensing-communication-concept-practice, 2022. [25] XIAO Zhiqiang and ZENG Yong, Waveform design and performance analysis for full-duplex integrated sensing and communication [J] IEEE Journal on Selected Areas in Communications, 2022, 40(6):1823–1837. doi: 10.1109/JSAC.2022.3155509. [26] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394. [27] NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236. [28] KUMARI P, MYERS N J, and HEATH R W. Adaptive and fast combined waveform-beamforming design for mmWave automotive joint communication-radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 996–1012. doi: 10.1109/JSTSP.2021.3071592. [29] LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001. [30] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648. [31] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509. [32] BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909. [33] CUI Yuanhao, LIU Fan, JING Xiaojun, et al,Integrating sensing and communications for ubiquitous IoT: Applications, trends,and challenges[J]. IEEE Network, 2021, 35(5):158–167. doi: 10.1109/MNET.010.2100152. [34] XU Yu, ZHANG Tiankui, LIU Yuanwei, et al. UAV-enabled integrated sensing, computing, and communication: A fundamental trade-off[J]. IEEE Wireless Communications Letters, 2023, 12(5): 843–847. doi: 10.1109/LWC.2023.3245728. [35] 中國通信學(xué)會. 通感算一體化網(wǎng)絡(luò)前沿報告(2021年)[R]. 中國通信學(xué)會, 2021.China Communications Society. Frontier Report on the Integrated Sensing, Communication and Computing Network[R]. China Communications Society, 2021. [36] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208. [37] CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001. [38] IMT-2030(6G)推進組. 太赫茲通信技術(shù)研究報告[R]. 2022.IMT-2030 (6G) Promotion Group. Terahertz Communication Technology Research Report[R]. 2022. [39] CLERCKX B, ZHANG Rui, SCHOBER R, et al. Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 4–33. doi: 10.1109/JSAC.2018.2872615. [40] WANG Jiadai, LIU Jiajia, LI Jingyi, et al. Artificial intelligence-assisted network slicing: Network assurance and service provisioning in 6G[J]. IEEE Vehicular Technology Magazine, 2023, 18(1): 49–58. doi: 10.1109/MVT.2022.3228399. [41] LIU Peng, FEI Zesong, WANG Xinyi, et al. Outage constrained robust secure beamforming in integrated sensing and communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2260–2264. doi: 10.1109/LWC.2022.3198683. [42] 王超, 安建平, 邢成文, 等. 面向空間信息網(wǎng)絡(luò)的隱蔽通信技術(shù)綜述[J]. 中國科學(xué): 信息科學(xué), 2023. doi: 10.1360/SSI-2023-0101.WANG Chao, AN Jianping, XING Chengwen, et al. A review of covert communication technologies for space information networks[J]. SCIENTIA SINICA Informationis, 2023. doi: 10.1360/SSI-2023-0101. [43] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893. -