一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種面向多任務(wù)的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化研究

裴二榮 婁宇涵 李永剛 黎偉

裴二榮, 婁宇涵, 李永剛, 黎偉. 一種面向多任務(wù)的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化研究[J]. 電子與信息學(xué)報, 2024, 46(7): 2748-2756. doi: 10.11999/JEIT230974
引用本文: 裴二榮, 婁宇涵, 李永剛, 黎偉. 一種面向多任務(wù)的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化研究[J]. 電子與信息學(xué)報, 2024, 46(7): 2748-2756. doi: 10.11999/JEIT230974
PEI Errong, LOU Yuhan, LI Yonggang, LI Wei. Research on Resource Allocation and Trajectory Optimization of a Multitask Unmanned Aerial Vehicles Assisted Communication Network[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2748-2756. doi: 10.11999/JEIT230974
Citation: PEI Errong, LOU Yuhan, LI Yonggang, LI Wei. Research on Resource Allocation and Trajectory Optimization of a Multitask Unmanned Aerial Vehicles Assisted Communication Network[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2748-2756. doi: 10.11999/JEIT230974

一種面向多任務(wù)的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化研究

doi: 10.11999/JEIT230974
基金項目: 國家自然科學(xué)基金(62071077),重慶成渝科技創(chuàng)新項目(KJCXZD2020026)
詳細(xì)信息
    作者簡介:

    裴二榮:男,教授,研究方向為無線移動通信

    婁宇涵:男,碩士生,研究方向為無人機(jī)通信、移動邊緣計算

    李永剛:男,副教授,研究方向為無線移動通信

    黎偉:男,博士,研究方向為無線移動通信

    通訊作者:

    婁宇涵 1162961114@qq.com

  • 中圖分類號: TN929.5

Research on Resource Allocation and Trajectory Optimization of a Multitask Unmanned Aerial Vehicles Assisted Communication Network

Funds: The National Natural Science Foundation of China (62071077), Chongqing Chengyu Science and Technology Innovation Project (KJCXZD2020026)
  • 摘要: 裝載各種有效荷載的無人機(jī)(UAV)能夠?qū)崿F(xiàn)傳感、通信和計算等多任務(wù),因而常被部署到數(shù)據(jù)采集(DA)和輔助計算等領(lǐng)域。但是到目前為止,絕大多數(shù)研究僅專注于單一功能的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化,對于面向多任務(wù)的資源分配和軌跡優(yōu)化問題還未解決。為此,該文提出一種綜合考慮無人機(jī)數(shù)據(jù)采集、數(shù)據(jù)廣播以及計算任務(wù)卸載的無人機(jī)輔助的通信網(wǎng)絡(luò)資源優(yōu)化的分配策略,旨在通過聯(lián)合優(yōu)化傳輸占空比、用戶發(fā)射功率與無人機(jī)軌跡,在滿足目標(biāo)位置采集數(shù)據(jù)實時廣播的前提下,最大化用戶卸載量。為了解決多變量耦合優(yōu)化問題,提出了基于塊坐標(biāo)下降(BCD)和連續(xù)凸逼近(SCA)的高效迭代優(yōu)化算法,將耦合優(yōu)化問題分解為3個子問題進(jìn)行迭代優(yōu)化。最后,大量仿真結(jié)果表明,該算法在公平性和總卸載計算量方面都優(yōu)于其他測試方案。
  • 圖  1  系統(tǒng)模型

    圖  2  無人機(jī)時隙分配策略

    圖  3  6種方案在每個時隙的總卸載吞吐量

    圖  4  6種方案的收斂性

    圖  5  無人機(jī)采集數(shù)據(jù)下行吞吐量

    圖  6  無人機(jī)飛行高度H對系統(tǒng)性能的影響

    圖  7  用戶傳輸能量對系統(tǒng)性能的影響

    圖  8  不同的$ {D_k} $和$ {d_{{\text{set}}}} $對系統(tǒng)性能的影響

    1  面向多任務(wù)的無人機(jī)軌跡和資源迭代優(yōu)化算法

     (1) 初始化最大誤差 $ \varepsilon $ 、總量吐量迭代值obj、最大迭代次數(shù) $ \alpha $ 與
      $ {{{D}}^i}\left( n \right) = \left\{ {{\boldsymbol{A}}_n^i,{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $
     (2) $ {\bf{while}} $ $ i \lt \alpha $ $ {\bf{do}} $
     (3)   $ i = i + 1, $
     (4)  給定 $ \left\{ {{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ,求解占空比子問題P1,得到最優(yōu)情況
        $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ;
     (5)  給定 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i} \right\} $ ,求解功率子問題P2,得到最優(yōu)情況
        $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ;
     (6)  給定 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ,求解軌跡子問題P3.1,得到最優(yōu)情
        況 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ;
     (7)  將 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ 帶入目標(biāo)函數(shù)中計算當(dāng)前總吞吐
        量迭代值objnew;
     (8)   $ {\bf{if }}{\text{ abs}}\left( {{\text{objnew}} - {\text{obj}}} \right) \le \varepsilon {\text{ }}{\bf{then}} $ break
     (9)  else $ {\text{obj}} = {\text{objnew}} $ ;
     (10) end while
     (11) 輸出最優(yōu)參數(shù)值 $ \left\{ {{\boldsymbol{A}}_n^*,{\boldsymbol{Q}}_n^*,{\boldsymbol{P}}_{m,n}^*} \right\} = \left\{ {{\boldsymbol{A}}_n^i,{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ,
       計算獲得當(dāng)前最大的總吞吐量為 $ {\text{ob}}{{\text{j}}^*} = {\text{objnew}} $ ;
    下載: 導(dǎo)出CSV

    表  1  關(guān)鍵的仿真參數(shù)

    參數(shù) 取值 參數(shù) 取值
    飛行高度$ H $ 100 m 最大傳輸能量$ {E_{\max }} $ 0.4 J
    飛行時隙$ N $ 60 最小傳輸速率$ {R_{\min }} $ 4×104 bit/s
    飛行周期$ T $ 60 s 最大平均功率$ {P_{\max }} $ 500 mW
    信道帶寬$ B $ 1 MHz 目標(biāo)區(qū)域半徑$ {d_{{\text{set}}}} $ 10 m
    最大速度$ {V_{\max }} $ 20 m/s 功率譜密度$ {N_0} $ –90 dBm/Hz
    信道功率增益$ {\beta _0} $ –60 dB 目標(biāo)位置數(shù)據(jù)量$ {D_k} $ 7×106 bit
    下載: 導(dǎo)出CSV
  • [1] VAN HUYNH D, DO-DUY T, NGUYEN L D, et al. Real-time optimized path planning and energy consumption for data collection in unmanned Ariel vehicles-aided intelligent wireless sensing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2753–2761. doi: 10.1109/TII.2021.3114358.
    [2] YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898.
    [3] OLLERO A, TOGNON M, SUAREZ A, et al. Past, present, and future of aerial robotic manipulators[J]. IEEE Transactions on Robotics, 2022, 38(1): 626–645. doi: 10.1109/TRO.2021.3084395.
    [4] LIU Yi, NIE Jiangtian, LI Xuandi, et al. Federated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms[J]. IEEE Internet of Things Journal, 2021, 8(12): 9827–9837. doi: 10.1109/JIOT.2020.3021006.
    [5] ZENG Yao and TANG Jianhua. MEC-assisted real-time data acquisition and processing for UAV with general missions[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1058–1072. doi: 10.1109/TVT.2022.3203704.
    [6] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Online trajectory and resource optimization for stochastic UAV-enabled MEC systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5629–5643. doi: 10.1109/TWC.2022.3142365.
    [7] ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162.
    [8] LI Tianyang, LENG Supeng, WANG Zhihong, et al. Intelligent resource allocation schemes for UAV-swarm-based cooperative sensing[J]. IEEE Internet of Things Journal, 2022, 9(21): 21570–21582. doi: 10.1109/JIOT.2022.3183099.
    [9] MENG Kaitao, HE Xiaofan, WU Qingqing, et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4232–4246. doi: 10.1109/TWC.2022.3224143.
    [10] LYU Liang, ZENG Fanzi, XIAO Zhu, et al. Computation bits maximization in UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2022, 9(13): 10640–10651. doi: 10.1109/JIOT.2021.3123429.
    [11] NIE Yiwen, ZHAO Junhui, GAO Feifei, et al. Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13162–13173. doi: 10.1109/TVT.2021.3118446.
    [12] LIANG Tianhao, LIU Wentao, YANG Jiayan, et al. Age of information based scheduling for UAV aided emergency communication networks[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 5128–5133. doi: 10.1109/ICC45855.2022.9838496.
    [13] ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117.
    [14] HU Zhenzhen, ZENG Fanzi, XIAO Zhu, et al. Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1630–1645. doi: 10.1109/TNSE.2021.3068123.
    [15] SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701.
    [16] LU Weidang, DING Yu, GAO Yuan, et al. Secure NOMA-based UAV-MEC network towards a flying eavesdropper[J]. IEEE Transactions on Communications, 2022, 70(5): 3364–3376. doi: 10.1109/TCOMM.2022.3159703.
    [17] LU Weidang, DING Yu, GAO Yuan, et al. Resource and trajectory optimization for secure communications in dual unmanned aerial vehicle mobile edge computing systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2704–2713. doi: 10.1109/TII.2021.3087726.
    [18] 裴二榮, 陳新虎, 陳琪美, 等. 基于全頻譜共享的三維軌跡和功率優(yōu)化方法[J]. 電子與信息學(xué)報, 2024, 3(46): 835–847. doi: 10.11999/JEIT230261.

    PEI Errong, CHEN Xinhu, CHEN Qimei, et al. 3D trajectory and power optimization method based on full spectrum sharing[J]. Journal of Electronics & Information Technology, 2024, 3(46): 835–847. doi: 10.11999/JEIT230261.
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數(shù):  825
  • HTML全文瀏覽量:  246
  • PDF下載量:  108
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-09-06
  • 修回日期:  2024-01-25
  • 網(wǎng)絡(luò)出版日期:  2024-02-27
  • 刊出日期:  2024-07-29

目錄

    /

    返回文章
    返回