一種面向多任務(wù)的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化研究
doi: 10.11999/JEIT230974
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶金美通信有限公司 重慶 400035
Research on Resource Allocation and Trajectory Optimization of a Multitask Unmanned Aerial Vehicles Assisted Communication Network
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Jinmei Communication Co., Ltd., Chongqing 400035, China
-
摘要: 裝載各種有效荷載的無人機(jī)(UAV)能夠?qū)崿F(xiàn)傳感、通信和計算等多任務(wù),因而常被部署到數(shù)據(jù)采集(DA)和輔助計算等領(lǐng)域。但是到目前為止,絕大多數(shù)研究僅專注于單一功能的無人機(jī)輔助的通信網(wǎng)絡(luò)資源分配與軌跡優(yōu)化,對于面向多任務(wù)的資源分配和軌跡優(yōu)化問題還未解決。為此,該文提出一種綜合考慮無人機(jī)數(shù)據(jù)采集、數(shù)據(jù)廣播以及計算任務(wù)卸載的無人機(jī)輔助的通信網(wǎng)絡(luò)資源優(yōu)化的分配策略,旨在通過聯(lián)合優(yōu)化傳輸占空比、用戶發(fā)射功率與無人機(jī)軌跡,在滿足目標(biāo)位置采集數(shù)據(jù)實時廣播的前提下,最大化用戶卸載量。為了解決多變量耦合優(yōu)化問題,提出了基于塊坐標(biāo)下降(BCD)和連續(xù)凸逼近(SCA)的高效迭代優(yōu)化算法,將耦合優(yōu)化問題分解為3個子問題進(jìn)行迭代優(yōu)化。最后,大量仿真結(jié)果表明,該算法在公平性和總卸載計算量方面都優(yōu)于其他測試方案。
-
關(guān)鍵詞:
- 無人機(jī)通信 /
- 移動邊緣計算 /
- 數(shù)據(jù)采集 /
- 凸優(yōu)化
Abstract: Unmanned Aerial Vehicles (UAV) loaded with various payloads can achieve multiple tasks such as sensing, communication, and computing, and are often deployed in fields such as Data Acquisition (DA) and auxiliary computing. However, so far, the vast majority of research has only focused on single function drone resource allocation and trajectory optimization, and the problem of multi task oriented drone resource allocation and trajectory optimization has not been solved yet. Therefore, an allocation strategy for optimizing drone communication network resources is proposed that comprehensively considers drone data acquisition, data broadcasting, and computing task offloading. The aim is to maximize user offloading by jointly optimizing transmission duty cycle, user transmission power, and drone trajectory, while meeting the real-time broadcast of target location data collection. In order to solve the problem of multivariable coupled optimization, an efficient iterative optimization algorithm based on Block Coordinate Descent (BCD) and Successive Convex Approximate (SCA) is proposed. The coupled optimization problem is decomposed into three sub problems for iterative optimization. Finally, a large number of simulation results show that the algorithm outperforms other testing schemes in terms of fairness and total offloading computation. -
1 面向多任務(wù)的無人機(jī)軌跡和資源迭代優(yōu)化算法
(1) 初始化最大誤差 $ \varepsilon $ 、總量吐量迭代值obj、最大迭代次數(shù) $ \alpha $ 與
$ {{{D}}^i}\left( n \right) = \left\{ {{\boldsymbol{A}}_n^i,{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $(2) $ {\bf{while}} $ $ i \lt \alpha $ $ {\bf{do}} $ (3) $ i = i + 1, $ (4) 給定 $ \left\{ {{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ,求解占空比子問題P1,得到最優(yōu)情況
$ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ;(5) 給定 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i} \right\} $ ,求解功率子問題P2,得到最優(yōu)情況
$ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ;(6) 給定 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ,求解軌跡子問題P3.1,得到最優(yōu)情
況 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ ;(7) 將 $ \left\{ {{\boldsymbol{A}}_n^{i + 1},{\boldsymbol{Q}}_n^{i + 1},{\boldsymbol{P}}_{m,n}^{i + 1}} \right\} $ 帶入目標(biāo)函數(shù)中計算當(dāng)前總吞吐
量迭代值objnew;(8) $ {\bf{if }}{\text{ abs}}\left( {{\text{objnew}} - {\text{obj}}} \right) \le \varepsilon {\text{ }}{\bf{then}} $ break (9) else $ {\text{obj}} = {\text{objnew}} $ ; (10) end while (11) 輸出最優(yōu)參數(shù)值 $ \left\{ {{\boldsymbol{A}}_n^*,{\boldsymbol{Q}}_n^*,{\boldsymbol{P}}_{m,n}^*} \right\} = \left\{ {{\boldsymbol{A}}_n^i,{\boldsymbol{Q}}_n^i,{\boldsymbol{P}}_{m,n}^i} \right\} $ ,
計算獲得當(dāng)前最大的總吞吐量為 $ {\text{ob}}{{\text{j}}^*} = {\text{objnew}} $ ;下載: 導(dǎo)出CSV
表 1 關(guān)鍵的仿真參數(shù)
參數(shù) 取值 參數(shù) 取值 飛行高度$ H $ 100 m 最大傳輸能量$ {E_{\max }} $ 0.4 J 飛行時隙$ N $ 60 最小傳輸速率$ {R_{\min }} $ 4×104 bit/s 飛行周期$ T $ 60 s 最大平均功率$ {P_{\max }} $ 500 mW 信道帶寬$ B $ 1 MHz 目標(biāo)區(qū)域半徑$ {d_{{\text{set}}}} $ 10 m 最大速度$ {V_{\max }} $ 20 m/s 功率譜密度$ {N_0} $ –90 dBm/Hz 信道功率增益$ {\beta _0} $ –60 dB 目標(biāo)位置數(shù)據(jù)量$ {D_k} $ 7×106 bit 下載: 導(dǎo)出CSV
-
[1] VAN HUYNH D, DO-DUY T, NGUYEN L D, et al. Real-time optimized path planning and energy consumption for data collection in unmanned Ariel vehicles-aided intelligent wireless sensing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2753–2761. doi: 10.1109/TII.2021.3114358. [2] YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898. [3] OLLERO A, TOGNON M, SUAREZ A, et al. Past, present, and future of aerial robotic manipulators[J]. IEEE Transactions on Robotics, 2022, 38(1): 626–645. doi: 10.1109/TRO.2021.3084395. [4] LIU Yi, NIE Jiangtian, LI Xuandi, et al. Federated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms[J]. IEEE Internet of Things Journal, 2021, 8(12): 9827–9837. doi: 10.1109/JIOT.2020.3021006. [5] ZENG Yao and TANG Jianhua. MEC-assisted real-time data acquisition and processing for UAV with general missions[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1058–1072. doi: 10.1109/TVT.2022.3203704. [6] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Online trajectory and resource optimization for stochastic UAV-enabled MEC systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5629–5643. doi: 10.1109/TWC.2022.3142365. [7] ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162. [8] LI Tianyang, LENG Supeng, WANG Zhihong, et al. Intelligent resource allocation schemes for UAV-swarm-based cooperative sensing[J]. IEEE Internet of Things Journal, 2022, 9(21): 21570–21582. doi: 10.1109/JIOT.2022.3183099. [9] MENG Kaitao, HE Xiaofan, WU Qingqing, et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4232–4246. doi: 10.1109/TWC.2022.3224143. [10] LYU Liang, ZENG Fanzi, XIAO Zhu, et al. Computation bits maximization in UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2022, 9(13): 10640–10651. doi: 10.1109/JIOT.2021.3123429. [11] NIE Yiwen, ZHAO Junhui, GAO Feifei, et al. Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13162–13173. doi: 10.1109/TVT.2021.3118446. [12] LIANG Tianhao, LIU Wentao, YANG Jiayan, et al. Age of information based scheduling for UAV aided emergency communication networks[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 5128–5133. doi: 10.1109/ICC45855.2022.9838496. [13] ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117. [14] HU Zhenzhen, ZENG Fanzi, XIAO Zhu, et al. Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1630–1645. doi: 10.1109/TNSE.2021.3068123. [15] SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701. [16] LU Weidang, DING Yu, GAO Yuan, et al. Secure NOMA-based UAV-MEC network towards a flying eavesdropper[J]. IEEE Transactions on Communications, 2022, 70(5): 3364–3376. doi: 10.1109/TCOMM.2022.3159703. [17] LU Weidang, DING Yu, GAO Yuan, et al. Resource and trajectory optimization for secure communications in dual unmanned aerial vehicle mobile edge computing systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2704–2713. doi: 10.1109/TII.2021.3087726. [18] 裴二榮, 陳新虎, 陳琪美, 等. 基于全頻譜共享的三維軌跡和功率優(yōu)化方法[J]. 電子與信息學(xué)報, 2024, 3(46): 835–847. doi: 10.11999/JEIT230261.PEI Errong, CHEN Xinhu, CHEN Qimei, et al. 3D trajectory and power optimization method based on full spectrum sharing[J]. Journal of Electronics & Information Technology, 2024, 3(46): 835–847. doi: 10.11999/JEIT230261. -