一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于壓電晶體的聲波激勵小型化低頻天線技術研究

扶逸凡 徐國凱 朱祥維 肖紹球 張靖浩 鐘玖平 李婉清 李君儒 王宇航 王子業(yè) 李杜

扶逸凡, 徐國凱, 朱祥維, 肖紹球, 張靖浩, 鐘玖平, 李婉清, 李君儒, 王宇航, 王子業(yè), 李杜. 基于壓電晶體的聲波激勵小型化低頻天線技術研究[J]. 電子與信息學報, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
引用本文: 扶逸凡, 徐國凱, 朱祥維, 肖紹球, 張靖浩, 鐘玖平, 李婉清, 李君儒, 王宇航, 王子業(yè), 李杜. 基于壓電晶體的聲波激勵小型化低頻天線技術研究[J]. 電子與信息學報, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
Citation: FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914

基于壓電晶體的聲波激勵小型化低頻天線技術研究

doi: 10.11999/JEIT230914
基金項目: 國家重點研發(fā)計劃(2021YFA0716500),南方海洋科學與工程廣東省實驗室(珠海)資助項目(SML2021SP408),深圳市科創(chuàng)委基礎研究重點項目(2020N259),深圳市科技計劃(GXWD20201231165807008, 20200830225317001)
詳細信息
    作者簡介:

    扶逸凡:男,博士生,研究方向為新型導航通信系統(tǒng)設計

    徐國凱:男,博士生,研究方向為新型電小天線設計

    朱祥維:男,博士,教授,研究方向為導航與通信技術

    肖紹球:男,博士,教授,研究方向為電磁輻射與散射

    張靖浩:男,碩士生,研究方向為聲波激勵新原理天線

    鐘玖平:男,博士,副教授,研究方向為光電晶體生長

    李婉清:女,博士后,研究方向為聲波激勵新原理天線、計算電磁學

    李君儒:男,博士后,研究方向為新型體聲波器件與磁彈耦合

    王宇航:男,博士生,研究方向為射頻與智能感知

    王子業(yè):男,博士生,研究方向為新型體聲波器件與磁彈耦合

    李杜:男,博士,副研究員,研究方向為微波與電磁場理論

    通訊作者:

    朱祥維  zhuxw666@mail.sysu.edu.cn

  • 中圖分類號: TN822

Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency

Funds: The National Key Research and Development Program of China (2021YFA0716500), The Project supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (SML2021SP408), The Key Basic Research Projects of Shenzhen Science and Technology Commission (2020N259), Shenzhen Science and Technology Program (GXWD20201231165807008, 20200830225317001)
  • 摘要: 水下信息實時傳輸?shù)男枨笈c日俱增,水聲通信和光通信等傳統(tǒng)通信手段在傳輸安全性與穩(wěn)定性方面具有先天難以彌補的劣勢,且在傳輸速率方面難以形成突破,因此亟待對新技術進行研究。為解決此問題,近年一些學者提出一種新機理、新材料和新工藝的小型化天線,有望實現(xiàn)低頻天線在尺寸和性能上的跨越,實現(xiàn)水下通信技術的變革。該文對此類聲波激勵小型化天線進行研究。首先闡述并建立了天線輻射機理及理論模型,分析了不同材料參數(shù)對天線性能的影響;然后根據(jù)模型參數(shù)設計加工了基于鈮酸鋰(LiNbO3)晶體的壓電型聲波激勵天線樣機,實驗結果表明在40.83 kHz諧振頻率處,與同尺寸單極子天線相比,其接收電壓峰值為后者的22倍,輻射效率為400多倍;最后對天線進行了方位測試和輻射效率計算。上述結果表明:基于壓電晶體的聲波激勵天線技術在低頻段小型化、機動化水下無線通信設備的應用中具有巨大潛力。
  • 圖  1  壓電型聲波激勵天線的工作原理

    圖  2  模型示意圖

    圖  3  Z切型,長度方向激勵下的電勢(箭頭表示電場方向)和應力分布

    圖  4  Y36°切型,長度方向激勵下的電勢(箭頭表示電場方向)和應力分布

    圖  5  輸入阻抗隨長度和寬度的變化

    圖  6  天線加工

    圖  7  快速掃描測試連接框圖

    圖  8  實驗室測試場景

    圖  9  鎖相放大器的接收信號幅度

    圖  10  各測試點的接收電壓掃頻圖

    圖  11  接收電壓幅值隨距離的變化

    圖  12  測試的接收電壓歸一化近場方向圖

    圖  13  諧振頻率附近的掃頻特性

  • [1] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398–402. doi: 10.1109/LAWP.2020.2968604
    [2] 張鋒, 孫發(fā)曉, 渠曉東, 等. 基于旋轉(zhuǎn)永磁體的低頻通信技術研究[J]. 電子與信息學報, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274

    ZHANG Feng, SUN Faxiao, QU Xiaodong, et al. Research on low frequency communication technology based on rotating permanent magnet[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274
    [3] 馬帥, 高夢迪, 曹世昱, 等. 超低頻天線最優(yōu)波束成形設計研究[J]. 電子與信息學報, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119

    MA Shuai, GAO Mengdi, CAO Shiyu, et al. Research on optimal beamforming design of ultra-low frequency antenna[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119
    [4] GLICKSTEIN J S, LIANG Jifu, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access, 2020, 8: 2455–2471. doi: 10.1109/ACCESS.2019.2961708
    [5] CHEN Huaihao, LIANG Xianfeng, DONG Cunzheng, et al. Ultra-compact mechanical antennas[J]. Applied Physics Letters, 2020, 117(17): 170501. doi: 10.1063/5.0025362
    [6] 丁宏. DARPA機械天線項目或掀起軍事通信革命[J]. 現(xiàn)代軍事, 2017(4): 71–73.

    DING Hong. DARPA mechanical antenna project may be raised military communication revolution[J]. Conmilit, 2017(4): 71–73.
    [7] 崔勇, 吳明, 宋曉, 等. 小型低頻發(fā)射天線的研究進展[J]. 物理學報, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792

    CUI Yong, WU Ming, SONG Xiao, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [8] LI Wanqing, LI Du, ZHOU Kaixiang, et al. A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 263–274. doi: 10.1109/TAP.2022.3220663
    [9] 周凱翔, 袁雪林, 李杜, 等. 基于壓電單晶的聲波激勵新機理小型化天線技術研究[C]. 2021年全國天線年會論文集, 寧波, 2021: 1974–1977.

    ZHOU Kaixiang, YUAN Xuelin, LI Du, et al. A study of antenna miniaturization technology on the new mechanism of acoustic excitation based on piezoelectric single crystal[C]. National Conference on Antennas 2021, Ningbo, 2021: 1974–1977.
    [10] GAO Zhaodong, SU Ming, LIU Yuanan, et al. Field-based circuit model of acoustically actuated piezoelectric antenna for characteristic evaluation and array applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11422–11433. doi: 10.1109/TAP.2022.3209626
    [11] ANGILELLA A J, DAVIS N K, and MCMICHAEL I T. Electrically small piezocomposite strain antennas[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 7923–7933. doi: 10.1109/TAP.2022.3184485
    [12] 張勇, 周洪澄, 艾競, 等. 基于聲波驅(qū)動的低頻小型化壓電天線設計[C]. 2021年全國天線年會論文集, 寧波, 2021: 1986–1988.

    ZHANG Yong, ZHOU Hongcheng, AI Jing, et al. Design of low-frequency miniaturized antenna based on acoustically actuated[C]. National Conference on Antennas 2021, Ningbo, China, 2021: 1986–1988.
    [13] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. Journal of the American Ceramic Society, 2005, 88(10): 2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x
    [14] ZHOU Zhengliu, KELLER S, SEPULVEDA A, et al. Modeling electromagnetic radiation induced from a piezoelectric shear-mode resonator[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 1: 129–138. doi: 10.1109/JMMCT.2016.2630721
    [15] DHIRAJ S and AMARATUNGA G A J. Electromagnetic radiation under explicit symmetry breaking[J]. Physical Review Letters, 2015, 114(14): 147701. doi: 10.1103/PhysRevLett.114.147701
    [16] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2
    [17] HASSANIEN A E, BREEN M, LI Minghuang, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6
    [18] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 761–767. doi: 10.1007/s42114-021-00278-1
    [19] 楊靖, 溫習, 楊紹隆, 等. 基于壓電效應的低頻無線通信機械天線[J]. 北京郵電大學學報, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255

    YANG Jing, WEN Xi, YANG Shaolong, et al. Low-frequency wireless communication mechanical antenna based on piezoelectric effect[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255
    [20] CAO Jinqing, YAO Huiming, PANG Yachen, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 410–418. doi: 10.1007/s42114-022-00431-4
    [21] WHEELER H A. Fundamental limitations of small antennas[J]. Proceedings of the IRE, 1947, 35(12): 1479–1484. doi: 10.1109/JRPROC.1947.226199
    [22] WHEELER H. Small antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 462–469. doi: 10.1109/TAP.1975.1141115
    [23] CHU L J. Physical limitations of Omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163–1175. doi: 10.1063/1.1715038
    [24] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 672–676. doi: 10.1109/8.496253
    [25] 徐國凱. 小型化機械天線的研究[D]. [碩士論文], 電子科技大學, 2021.

    XU Guokai. Research on miniaturized mechanical antennas[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [26] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8
    [27] XIAO Ning, WANG Yao, CHEN Lei, et al. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 34–38. doi: 10.1109/LAWP.2022.3201070
    [28] TIAN Shiwei and NAN Tianxiang. Acoustically driven VLF antennas with high data rates[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 2021: 497–498. doi: 10.1109/APS/URSI47566.2021.9704791.
    [29] 劉卿. 電小天線在甚低頻接收系統(tǒng)中的應用研究[D]. [碩士論文], 武漢大學, 2018.

    LIU Qing. The application of the electrically small antenna in very low frequency receiving system[D]. [Master dissertation], Wuhan University, 2018.
  • 加載中
圖(13)
計量
  • 文章訪問數(shù):  683
  • HTML全文瀏覽量:  398
  • PDF下載量:  132
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-10-12
  • 網(wǎng)絡出版日期:  2023-10-20
  • 刊出日期:  2023-11-28

目錄

    /

    返回文章
    返回