基于壓電晶體的聲波激勵小型化低頻天線技術研究
doi: 10.11999/JEIT230914
-
1.
南方海洋科學與工程廣東省實驗室(珠海) 珠海 519082
-
2.
中山大學電子與通信工程學院 深圳 518107
-
3.
中山大學系統(tǒng)科學與工程學院 廣州 510006
-
4.
中山大學電子與信息工程學院 廣州 510006
-
5.
中山大學材料學院 深圳 518107
-
6.
中山大學·深圳 深圳 518107
Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency
-
1.
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
-
2.
School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, 518107, China
-
3.
School of System Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
-
4.
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
-
5.
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
-
6.
Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
-
摘要: 水下信息實時傳輸?shù)男枨笈c日俱增,水聲通信和光通信等傳統(tǒng)通信手段在傳輸安全性與穩(wěn)定性方面具有先天難以彌補的劣勢,且在傳輸速率方面難以形成突破,因此亟待對新技術進行研究。為解決此問題,近年一些學者提出一種新機理、新材料和新工藝的小型化天線,有望實現(xiàn)低頻天線在尺寸和性能上的跨越,實現(xiàn)水下通信技術的變革。該文對此類聲波激勵小型化天線進行研究。首先闡述并建立了天線輻射機理及理論模型,分析了不同材料參數(shù)對天線性能的影響;然后根據(jù)模型參數(shù)設計加工了基于鈮酸鋰(LiNbO3)晶體的壓電型聲波激勵天線樣機,實驗結果表明在40.83 kHz諧振頻率處,與同尺寸單極子天線相比,其接收電壓峰值為后者的22倍,輻射效率為400多倍;最后對天線進行了方位測試和輻射效率計算。上述結果表明:基于壓電晶體的聲波激勵天線技術在低頻段小型化、機動化水下無線通信設備的應用中具有巨大潛力。Abstract: The demand for real-time communication of underwater information is rising by the day. Traditional communication technologies, such as underwater acoustic communication and optical communication, have inherent drawbacks in terms of transmission security and stability, and it is difficult to build a transmission rate breakthrough. As a result, it is critical to investigate new technologies. To address this issue, some researchers have proposed a miniaturized antenna with new mechanisms, materials, and technology, which is expected to realize a leap in size and performance of low-frequency antennas and transform underwater communication technology. This type of acoustically excited miniaturized antenna is studied in this paper. First, the radiation mechanism and theoretical model of the antenna are explained and established, and the effect of various material factors on the antenna's performance is investigated. The model parameters are then used to develop and manufacture a piezoelectric acoustically excited antenna prototype based on lithium niobate (LiNbO3) crystal. The experimental findings reveal that at the resonance frequency of 40.83 kHz, the peak receiving voltage is 22 times that of the monopole antenna, and the radiation efficiency is more than 400 times that of the latter. Finally, the antenna's pattern test and radiation efficiency calculation are performed. The results suggest that acoustically excited antenna technology based on piezoelectric crystals has a lot of potential for low-frequency miniaturized and motorized underwater wireless communication equipment.
-
[1] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398–402. doi: 10.1109/LAWP.2020.2968604 [2] 張鋒, 孫發(fā)曉, 渠曉東, 等. 基于旋轉(zhuǎn)永磁體的低頻通信技術研究[J]. 電子與信息學報, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274ZHANG Feng, SUN Faxiao, QU Xiaodong, et al. Research on low frequency communication technology based on rotating permanent magnet[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274 [3] 馬帥, 高夢迪, 曹世昱, 等. 超低頻天線最優(yōu)波束成形設計研究[J]. 電子與信息學報, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119MA Shuai, GAO Mengdi, CAO Shiyu, et al. Research on optimal beamforming design of ultra-low frequency antenna[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119 [4] GLICKSTEIN J S, LIANG Jifu, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access, 2020, 8: 2455–2471. doi: 10.1109/ACCESS.2019.2961708 [5] CHEN Huaihao, LIANG Xianfeng, DONG Cunzheng, et al. Ultra-compact mechanical antennas[J]. Applied Physics Letters, 2020, 117(17): 170501. doi: 10.1063/5.0025362 [6] 丁宏. DARPA機械天線項目或掀起軍事通信革命[J]. 現(xiàn)代軍事, 2017(4): 71–73.DING Hong. DARPA mechanical antenna project may be raised military communication revolution[J]. Conmilit, 2017(4): 71–73. [7] 崔勇, 吳明, 宋曉, 等. 小型低頻發(fā)射天線的研究進展[J]. 物理學報, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792CUI Yong, WU Ming, SONG Xiao, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792 [8] LI Wanqing, LI Du, ZHOU Kaixiang, et al. A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 263–274. doi: 10.1109/TAP.2022.3220663 [9] 周凱翔, 袁雪林, 李杜, 等. 基于壓電單晶的聲波激勵新機理小型化天線技術研究[C]. 2021年全國天線年會論文集, 寧波, 2021: 1974–1977.ZHOU Kaixiang, YUAN Xuelin, LI Du, et al. A study of antenna miniaturization technology on the new mechanism of acoustic excitation based on piezoelectric single crystal[C]. National Conference on Antennas 2021, Ningbo, 2021: 1974–1977. [10] GAO Zhaodong, SU Ming, LIU Yuanan, et al. Field-based circuit model of acoustically actuated piezoelectric antenna for characteristic evaluation and array applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11422–11433. doi: 10.1109/TAP.2022.3209626 [11] ANGILELLA A J, DAVIS N K, and MCMICHAEL I T. Electrically small piezocomposite strain antennas[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 7923–7933. doi: 10.1109/TAP.2022.3184485 [12] 張勇, 周洪澄, 艾競, 等. 基于聲波驅(qū)動的低頻小型化壓電天線設計[C]. 2021年全國天線年會論文集, 寧波, 2021: 1986–1988.ZHANG Yong, ZHOU Hongcheng, AI Jing, et al. Design of low-frequency miniaturized antenna based on acoustically actuated[C]. National Conference on Antennas 2021, Ningbo, China, 2021: 1986–1988. [13] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. Journal of the American Ceramic Society, 2005, 88(10): 2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x [14] ZHOU Zhengliu, KELLER S, SEPULVEDA A, et al. Modeling electromagnetic radiation induced from a piezoelectric shear-mode resonator[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 1: 129–138. doi: 10.1109/JMMCT.2016.2630721 [15] DHIRAJ S and AMARATUNGA G A J. Electromagnetic radiation under explicit symmetry breaking[J]. Physical Review Letters, 2015, 114(14): 147701. doi: 10.1103/PhysRevLett.114.147701 [16] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2 [17] HASSANIEN A E, BREEN M, LI Minghuang, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6 [18] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 761–767. doi: 10.1007/s42114-021-00278-1 [19] 楊靖, 溫習, 楊紹隆, 等. 基于壓電效應的低頻無線通信機械天線[J]. 北京郵電大學學報, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255YANG Jing, WEN Xi, YANG Shaolong, et al. Low-frequency wireless communication mechanical antenna based on piezoelectric effect[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255 [20] CAO Jinqing, YAO Huiming, PANG Yachen, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 410–418. doi: 10.1007/s42114-022-00431-4 [21] WHEELER H A. Fundamental limitations of small antennas[J]. Proceedings of the IRE, 1947, 35(12): 1479–1484. doi: 10.1109/JRPROC.1947.226199 [22] WHEELER H. Small antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 462–469. doi: 10.1109/TAP.1975.1141115 [23] CHU L J. Physical limitations of Omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163–1175. doi: 10.1063/1.1715038 [24] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 672–676. doi: 10.1109/8.496253 [25] 徐國凱. 小型化機械天線的研究[D]. [碩士論文], 電子科技大學, 2021.XU Guokai. Research on miniaturized mechanical antennas[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. [26] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8 [27] XIAO Ning, WANG Yao, CHEN Lei, et al. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 34–38. doi: 10.1109/LAWP.2022.3201070 [28] TIAN Shiwei and NAN Tianxiang. Acoustically driven VLF antennas with high data rates[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 2021: 497–498. doi: 10.1109/APS/URSI47566.2021.9704791. [29] 劉卿. 電小天線在甚低頻接收系統(tǒng)中的應用研究[D]. [碩士論文], 武漢大學, 2018.LIU Qing. The application of the electrically small antenna in very low frequency receiving system[D]. [Master dissertation], Wuhan University, 2018. -