一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

混合智能反射面輔助的通信感知一體化:高能效波束成形設(shè)計

褚宏云 楊夢瑤 黃航 鄭凌 潘雪 肖戈

褚宏云, 楊夢瑤, 黃航, 鄭凌, 潘雪, 肖戈. 混合智能反射面輔助的通信感知一體化:高能效波束成形設(shè)計[J]. 電子與信息學報, 2024, 46(6): 2462-2469. doi: 10.11999/JEIT230699
引用本文: 褚宏云, 楊夢瑤, 黃航, 鄭凌, 潘雪, 肖戈. 混合智能反射面輔助的通信感知一體化:高能效波束成形設(shè)計[J]. 電子與信息學報, 2024, 46(6): 2462-2469. doi: 10.11999/JEIT230699
CHU Hongyun, YANG Mengyao, HUANG Hang, ZHENG Ling, PAN Xue, XIAO Ge. Hybrid Reconfigurable Intelligent Surface Assisted Integrated Sensing and Communication: Energy Efficient Beamforming Design[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2462-2469. doi: 10.11999/JEIT230699
Citation: CHU Hongyun, YANG Mengyao, HUANG Hang, ZHENG Ling, PAN Xue, XIAO Ge. Hybrid Reconfigurable Intelligent Surface Assisted Integrated Sensing and Communication: Energy Efficient Beamforming Design[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2462-2469. doi: 10.11999/JEIT230699

混合智能反射面輔助的通信感知一體化:高能效波束成形設(shè)計

doi: 10.11999/JEIT230699
基金項目: 國家自然科學基金(62102314),173計劃技術(shù)領(lǐng)域基金(2022-JCJQ-JJ-0730),陜西省自然科學基金(2022JQ-635)
詳細信息
    作者簡介:

    褚宏云:女,講師,碩士生導(dǎo)師,研究方向為智能超表面使能無線通信系統(tǒng)關(guān)鍵技術(shù)

    楊夢瑤:女,碩士生,研究方向為通信感知一體化

    黃航:男,高級工程師,研究方向為電子對抗

    鄭凌:男,講師,碩士生導(dǎo)師,研究方向為下一代網(wǎng)絡(luò)體系架構(gòu)、高性能網(wǎng)絡(luò)與交換、人工智能算法及其FPGA實現(xiàn)

    潘雪:女,碩士生,研究方向為智能超表面信道估計

    肖戈:男,碩士生,研究方向為智能超表面波束形成

    通訊作者:

    楊夢瑤 myyang1@yeah.net

  • 中圖分類號: TN929.5

Hybrid Reconfigurable Intelligent Surface Assisted Integrated Sensing and Communication: Energy Efficient Beamforming Design

Funds: The National Natural Science Foundation of China (62102314), The 173 Program for Technology (2022-JCJQ-JJ-0730), The Natural Science Foundation of Shaanxi Province (2022JQ-635)
  • 摘要: 能量效率(EE)是5G+/6G無線通信的重要設(shè)計指標,而智能反射面(RIS)被普遍認為是改善EE的潛在手段。不同于被動RIS,混合RIS由有源和無源元件組成,對來波移相的同時可放大信號強度,能夠有效克服被動RIS引起的“乘性衰落”效應(yīng)。鑒于此,該文提出一種混合RIS輔助通信感知一體化(ISAC)的下行鏈路傳輸系統(tǒng)。為探究數(shù)據(jù)傳輸速率與能耗之間的內(nèi)在關(guān)聯(lián),該文以RIS輔助ISAC網(wǎng)絡(luò)能量效率最大化為目標,在滿足基站(BS)發(fā)射功率、波束圖增益以及混合RIS功率和幅值約束的條件下,聯(lián)合優(yōu)化基站端的波束賦形和混合RIS的相移。為解決該復(fù)雜的分數(shù)規(guī)劃問題,提出基于交替優(yōu)化(AO)的算法來求解。為克服AO算法中引入輔助變量造成算法復(fù)雜度高的難題,利用耦合優(yōu)化變量的關(guān)聯(lián),提出一種基于級聯(lián)深度學習網(wǎng)絡(luò)的求解算法。仿真結(jié)果表明,提出的混合RIS輔助ISAC方案在和速率、能效方面皆優(yōu)于現(xiàn)有方案,且算法收斂速度快。
  • 圖  1  混合RIS輔助的ISAC系統(tǒng)模型

    圖  2  兩階段波束賦形網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  3  批量大小對損失的影響

    圖  4  不同基站發(fā)射功率下的能量效率

    圖  5  不同基站發(fā)射功率下的用戶和速率

    圖  6  不同RIS元件數(shù)目下的能量效率

    圖  7  波束圖

    算法1 算法整體流程
     初始化:變量$ {b^{(0)}} $、$ {\xi ^{(0)}} $、$ {{\boldsymbol{W}}^{(0)}} $和$ {{\boldsymbol{\theta }}^{(0)}} $
     迭代次數(shù)$ i = 1 $,最大迭代次數(shù)$ {I_{\max }} $
     (1)While$ {f_i} - {f_{i - 1}} \ge \varepsilon $或$ i \lt {I_{\max }} $do
     (2)根據(jù)式(11)更新拉格朗日對偶重組輔助變量$ {\xi ^{(i)}} $
     (3)根據(jù)式(13)更新二次變換輔助變量$ {b^{(i)}} $
     (4)利用CVX求解凸規(guī)劃問題$ {{\text{P}}_{{\text{2-1}}}} $,更新優(yōu)化變量$ {{\boldsymbol{W}}^{(i)}} $
     (5)利用CVX求解凸規(guī)劃問題$ {{\text{P}}_{{\text{3}}}} $,更新優(yōu)化變量$ {{\boldsymbol{\varphi}} ^{(i)}} $
     (6)更新能量效率$ \eta $,迭代次數(shù)$ i = i + 1 $
     (7)End While
    下載: 導(dǎo)出CSV

    表  1  部分仿真參數(shù)

    參數(shù)名稱 符號 數(shù)值 參數(shù)名稱 符號 數(shù)值
    BS發(fā)射天線數(shù) $M$ 8 用戶噪聲功率(dBm) $\sigma _0^2$ –80
    用戶數(shù) $K$ 4 RIS噪聲功率(dBm) $\sigma _c^2$ –70
    目標數(shù) $L$ 2 Rice因子 $ \rho $ 10
    RIS元件總數(shù) $N$ 256 最小波束圖增益(dB) $ \varGamma $ 10
    RIS主動元件數(shù) $T$ 64 目標方向($ ^\circ $) $ {\theta _1},{\theta _2} $ $ \pm 45 $
    RIS最大消耗功率(dBm) ${P_0}$ 10 能量放大系數(shù) ${{a,b}}$ 0.8
    RIS有源元件放大系數(shù)(dB) $\alpha $ 10 懲罰系數(shù) $ {\beta _1},{\beta _2},{\beta _3} $ 50
    下載: 導(dǎo)出CSV
  • [1] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communi cations, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [2] TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324.
    [3] FU Min, ZHOU Yong, SHI Yuanming, et al. Reconfigurable intelligent surface empowered downlink non-orthogonal multiple access[J]. IEEE Transactions on Communications, 2021, 69(6): 3802–3817. doi: 10.1109/TCOMM.2021.3066 587.
    [4] XUE Qing, WEI Renlong, MA Shaodan, et al. Multi-user mmWave uplink communications based on collaborative double-RIS: Joint beamforming and power control[J]. IEEE Communications Letters, 2023, 27(10): 2702–2706. doi: 10.1109/LCOMM.2023.3309710.
    [5] XIE Hao, GU Bowen, LI Dong, et al. Gain without pain: Recycling reflected energy from wireless-powered RIS-aided communications[J]. IEEE Internet of Things Journal, 2023, 10(15): 13264–13280. doi: 10.1109/JIOT.2023.3262517.
    [6] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603.
    [7] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [8] MAI Yuying and DU Huiqin. Joint beamforming and phase shift design for RIS-aided ISAC system[C]. 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 2022: 155–160. doi: 10.1109/ICCC56324.2022.10065868.
    [9] LIU Rang, LI Ming, LIU Qian, et al. SNR/CRB-constrained joint beamforming and reflection designs for RIS-ISAC systems[EB/OL]. https://arxiv.org/abs/2301.11134, 2023.
    [10] XING Zhe, WANG Rui, and YUAN Xiaojun. Joint active and passive beamforming design for reconfigurable intelligent surface enabled integrated sensing and communication[J]. IEEE Transactions on Communications, 2023, 71(4): 2457–2474. doi: 10.1109/TCOMM.2023.3244 246.
    [11] WANG Fangzhou, LI Hongbin, and FANG Jun. Joint active and passive beamforming for IRS-assisted radar[J]. IEEE Signal Processing Letters, 2022, 29: 349–353. doi: 10.1109/LSP.2021.3134899.
    [12] WANG Xinyi, FEI Zesong, HUANG Jingxuan, et al. Joint waveform and discrete phase shift design for RIS-assisted integrated sensing and communication system under Cramer-Rao bound constraint[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 1004–1009. doi: 10.1109/TVT.2021.3122889.
    [13] LIU Chenxi, HU Xiaoling, PENG Mugen, et al. Sensing for beamforming: An IRS-enabled integrated sensing and communication framework[C]. 2022 - IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 5567–5572. doi: 10.1109/ICC45855.2022.9838505.
    [14] LYU Wanting, XIU Yue, YANG Songjie, et al. Energy-efficient cell-free network assisted by hybrid RISs[J]. IEEE Wireless Communications Letters, 2023, 12(4): 718–722. doi: 10.1109/LWC.2023.3241644.
    [15] NGUYEN N T, VU Q D, LEE K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6228–6244. doi: 10.1109/TVT.2022.3158686.
    [16] SANKAR R S P and CHEPURI S P. Beamforming in hybrid RIS assisted integrated sensing and communication systems[C]. 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 2022: 1082–1086. doi: 10.23919/EUSIPCO55093.2022.9909562.
    [17] HE Zhenyao, XU Wei, SHEN Hong, et al. Energy efficient beamforming optimization for integrated sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(7): 1374–1378. doi: 10.1109/LWC.2022.3169517.
    [18] ZHOU Chunyu, XU Yongjun, LI Dong, et al. Energy-efficient maximization for RIS-aided MISO symbiotic radio systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13689–13694. doi: 10.1109/TVT.2023.3274796.
    [19] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [20] MU Gaoze, ZHAO Yusen, ZHONG Shida, et al. An element selection enhanced hybrid relay-RIS assisted communication system[C]. 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), Shenzhen, China, 2022: 1–5. doi: 10.1109/ICICSP55539.2022.10050590.
    [21] NGUYEN N T, NGUYEN V D, WU Qingqing, et al. Hybrid active-passive reconfigurable intelligent surface-assisted UAV communications[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 3126–3131. doi: 10.1109/GLOBECOM48099.2022.10001719.
    [22] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. Passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [23] SHEN Kaiming and YU Wei. Fractional programming for communication systems—Part I: Power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616–2630. doi: 10.1109/TSP.2018.2812733.
    [24] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061.
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數(shù):  846
  • HTML全文瀏覽量:  878
  • PDF下載量:  185
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-11-14
  • 錄用日期:  2023-11-14
  • 網(wǎng)絡(luò)出版日期:  2023-11-21
  • 刊出日期:  2024-06-30

目錄

    /

    返回文章
    返回