基于混沌理論與DNA動(dòng)態(tài)編碼的衛(wèi)星圖像加密算法
doi: 10.11999/JEIT230203
-
1.
西安電子科技大學(xué)通信工程學(xué)院 西安 710071
-
2.
北京電子科技學(xué)院電子與通信工程系 北京 100070
Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding
-
1.
School of Telecommunication Engineering, Xidian University, Xi’an 710071, China
-
2.
Department of Electronic and Communication Engineering, Beijing Electronics Science and Technology Institute, Beijing 100070, China
-
摘要: 針對(duì)衛(wèi)星圖像在傳輸、存儲(chǔ)過(guò)程中涉及的信息安全問(wèn)題,該文提出一種新型的基于混沌理論與DNA動(dòng)態(tài)編碼的衛(wèi)星圖像加密算法。首先,提出一種改進(jìn)型無(wú)限折疊混沌映射,拓寬了原有無(wú)限折疊混沌映射的混沌區(qū)間。之后,結(jié)合改進(jìn)型Chebyshev混沌映射與SHA-256哈希算法,生成加密算法的密鑰流,提升算法的明文敏感性。然后,利用混沌系統(tǒng)的狀態(tài)值對(duì)Hilbert局部置亂后的像素進(jìn)行DNA編碼,實(shí)現(xiàn)DNA動(dòng)態(tài)編碼,解決了DNA編碼規(guī)則較少所帶來(lái)的容易受到暴力攻擊的弱點(diǎn)。最后,使用混沌序列完成進(jìn)一步混沌加密,從而徹底混淆原始像素信息,增加加密算法的隨機(jī)性與復(fù)雜性,得到密文圖像。實(shí)驗(yàn)結(jié)果表明,該算法具有較好的加密效果和應(yīng)對(duì)各種攻擊的能力。
-
關(guān)鍵詞:
- 衛(wèi)星圖像加密 /
- 混沌理論 /
- DNA動(dòng)態(tài)編碼 /
- 哈希算法
Abstract: Considering the information security problems involved in the transmission and storage of satellite images, a new satellite image encryption algorithm based on chaos theory and DNA dynamic coding is proposed. Firstly, an improved infinite folding chaotic map is proposed, which broadens the chaotic interval of the original infinite folding chaotic map. Then, combined with the improved Chebyshev chaotic map and SHA-256 hash algorithm, the key stream of the encryption algorithm is generated to improve the plaintext sensitivity of the algorithm. Then, the state value of the chaotic system is used to encode the pixels after Hilbert local scrambling to realize DNA dynamic coding, which solves the weakness of being vulnerable to violent attacks caused by fewer DNA coding rules. Finally, the chaotic sequence is used to complete further chaotic encryption, to completely confuse the original pixel information, increase the randomness and complexity of the encryption algorithm, and obtain the ciphertext image. The experimental results show that the algorithm has a better encryption effect and the ability to deal with various attacks.-
Key words:
- Satellite image encryption /
- Chaos theory /
- DNA dynamic coding /
- Hash algorithm
-
表 3 相關(guān)系數(shù)分析
衛(wèi)星圖像 明文圖像 密文圖像 水平方向 垂直方向 對(duì)角線方向 水平方向 垂直方向 對(duì)角線方向 Shidao 0.990 2 0.987 6 0.977 1 0.019 7 –0.004 8 –0.003 5 Qingdao 0.986 1 0.989 9 0.974 1 0.010 4 –0.010 8 –0.016 5 下載: 導(dǎo)出CSV
表 5 視覺(jué)與無(wú)損分析
測(cè)試圖像 PSNR SSIM PSNR SSIM Lena 8.561 1 0.008 9 ∞ 1 Shidao 7.471 4 0.007 4 ∞ 1 Qingdao 8.517 9 0.009 4 ∞ 1 下載: 導(dǎo)出CSV
-
[1] LIU Zhanqiang, WANG Licheng, WANG Xianmin, et al. Secure remote sensing image registration based on compressed sensing in cloud setting[J]. IEEE Access, 2019, 7: 36516–36526. doi: 10.1109/ACCESS.2019.2903826. [2] NAIM M, ALI PACHA A, and SERIEF C. A novel satellite image encryption algorithm based on hyperchaotic systems and Josephus problem[J]. Advances in Space Research, 2021, 67(7): 2077–2103. doi: 10.1016/j.asr.2021.01.018. [3] BENTOUTOU Y, BENSIKADDOUR E H, TALEB N, et al. An improved image encryption algorithm for satellite applications[J]. Advances in Space Research, 2020, 66(1): 176–192. doi: 10.1016/j.asr.2019.09.027. [4] CHEN Junxin, ZHU Zhiliang, FU Chong, et al. An efficient image encryption scheme using lookup table-based confusion and diffusion[J]. Nonlinear Dynamics, 2015, 81(3): 1151–1166. doi: 10.1007/s11071-015-2057-6. [5] HU Guiqiang, XIAO Di, WANG Yong, et al. Cryptanalysis of a chaotic image cipher using Latin square-based confusion and diffusion[J]. Nonlinear Dynamics, 2017, 88(2): 1305–1316. doi: 10.1007/s11071-016-3311-2. [6] MONDAL B, KUMAR P, and SINGH S. A chaotic permutation and diffusion based image encryption algorithm for secure communications[J]. Multimedia Tools and Applications, 2018, 77(23): 31177–31198. doi: 10.1007/s11042-018-6214-z. [7] LI Ming, ZHOU Kanglei, REN Hua, et al. Cryptanalysis of permutation–diffusion-based lightweight chaotic image encryption scheme using CPA[J]. Applied Sciences, 2019, 9(3): 494. doi: 10.3390/app9030494. [8] DAWAHDEH Z E, YAAKOB S N, and AZIF BIN OTHMAN R. A new image encryption technique combining elliptic curve cryptosystem with hill cipher[J]. Journal of King Saud University - Computer and Information Sciences, 2018, 30(3): 349–355. doi: 10.1016/j.jksuci.2017.06.004. [9] LONE P N, SINGH D, STOFFOVá V, et al. Cryptanalysis and improved image encryption scheme using elliptic curve and affine hill cipher[J]. Mathematics, 2022, 10(20): 3878. doi: 10.3390/math10203878. [10] ANDONO P N and SETIADI D R I M. Improved pixel and bit confusion-diffusion based on mixed chaos and hash operation for image encryption[J]. IEEE Access, 2022, 10: 115143–115156. doi: 10.1109/ACCESS.2022.3218886. [11] KHAIRULLAH M K, ALKAHTANI A A, BAHARUDDIN M Z B, et al. Designing 1D chaotic maps for fast chaotic image encryption[J]. Electronics, 2021, 10(17): 2116. doi: 10.3390/electronics10172116. [12] JIANG Donghua, LIU Lidong, ZHU Liya, et al. Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform[J]. Signal Processing, 2021, 188: 108220. doi: 10.1016/j.sigpro.2021.108220. [13] ZHANG Xuncai, WANG Lingfei, ZHOU Zheng, et al. A chaos-based image encryption technique utilizing Hilbert curves and H-fractals[J]. IEEE Access, 2019, 7: 74734–74746. doi: 10.1109/ACCESS.2019.2921309. [14] SUN Junwei, MA Yongxing, WANG Zicheng, et al. Dynamic analysis and cryptographic application of a 5D hyperbolic memristor-coupled neuron[J]. Nonlinear Dynamics, 2023, 111(9): 8751–8769. doi: 10.1007/s11071-023-08237-9. [15] 徐錫統(tǒng), 陳圣波, 于巖. 結(jié)合小波包變換與混沌神經(jīng)元的遙感圖像加密[J]. 遙感信息, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011.XU Xitong, CHEN Shengbo, and YU Yan. Remote sensing image encryption combining wavelet packet transform and chaotic neuron[J]. Remote Sensing Information, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011. [16] WANG Xingyuan, WANG Yu, ZHU Xiaoqiang, et al. Image encryption scheme based on chaos and DNA plane operations[J]. Multimedia Tools and Applications, 2019, 78(18): 26111–26128. doi: 10.1007/s11042-019-07794-9. [17] YILDIRIM M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon[J]. Microelectronics Journal, 2020, 104: 104878. doi: 10.1016/j.mejo.2020.104878. [18] LI Xiang, WANG Leyuan, YAN Yinfa, et al. An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems[J]. Optik, 2016, 127(5): 2558–2565. doi: 10.1016/j.ijleo.2015.11.221. [19] CHAI Xiuli, CHEN Yiran, and BROYDE L. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi: 10.1016/j.optlaseng.2016.08.009. [20] WANG Leimin, JIANG Shan, GE Mingfeng, et al. Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(12): 4957–4969. doi: 10.1109/TCSI.2021.3121555. [21] WU Jiahui, LIAO Xiaofeng, and YANG Bo. Image encryption using 2D Hénon-Sine map and DNA approach[J]. Signal Processing, 2018, 153: 11–23. doi: 10.1016/j.sigpro.2018.06.008. [22] WU Chenyang, SUN Kehui, and XIAO Yan. A hyperchaotic map with multi-elliptic cavities based on modulation and coupling[J]. The European Physical Journal Special Topics, 2021, 230(7): 2011–2020. doi: 10.1140/epjs/s11734-021-00126-9. [23] 楊宣兵. 幾類混沌系統(tǒng)特性分析、控制與圖像加密應(yīng)用研究[D]. [博士論文], 合肥工業(yè)大學(xué), 2020.YANG Xuanbing. Characteristics analysis and control of several chaotic systems and their application in image encryption[D]. [Ph. D. dissertation], Hefei University of Technology, 2020. [24] FAN Shengwen, LI Kai, ZHANG Ying, et al. A hybrid chaotic encryption scheme for wireless body area networks[J]. IEEE Access, 2020, 8: 183411–183429. doi: 10.1109/ACCESS.2020.3029263. [25] 蔣東華, 朱禮亞, 沈子懿, 等. 結(jié)合二維壓縮感知和混沌映射的雙圖像視覺(jué)安全加密算法[J]. 西安交通大學(xué)學(xué)報(bào), 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015.JIANG Donghua, ZHU Liya, SHEN Ziyi, et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015. [26] 孫克輝, 賀少波, 何毅, 等. 混沌偽隨機(jī)序列的譜熵復(fù)雜性分析[J]. 物理學(xué)報(bào), 2013, 62(1): 010501. doi: 10.7498/aps.62.010501.SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501. [27] ABBASI A A, MAZINANI M, and HOSSEINI R. Chaotic evolutionary-based image encryption using RNA codons and amino acid truth table[J]. Optics & Laser Technology, 2020, 132: 106465. doi: 10.1016/j.optlastec.2020.106465. [28] MAHMUD M, ATTA-UR-RAHMAN, LEE M, et al. Evolutionary-based image encryption using RNA codons truth table[J]. Optics & Laser Technology, 2020, 121: 105818. doi: 10.1016/j.optlastec.2019.105818. [29] CAO Chun, SUN Kehui, and LIU Wenhao. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map[J]. Signal Processing, 2018, 143: 122–133. doi: 10.1016/j.sigpro.2017.08.020. -