Research on Blind Super-resolution Reconstruction with Double Discriminator
-
Harbin University of Science and Technology, Harbin 150080, China
-
摘要: 圖像超分變率重建方法在公共安全檢測(cè)、衛(wèi)星成像、醫(yī)學(xué)和照片恢復(fù)等方面有著十分重要的用途。該文對(duì)基于生成對(duì)抗網(wǎng)絡(luò)的超分辨率重建方法進(jìn)行研究,提出一種基于純合成數(shù)據(jù)訓(xùn)練的真實(shí)世界盲超分算法(Real-ESRGAN)的UNet3+雙鑒別器Real-ESRGAN方法(Double Unet3+ Real-ESRGAN, DU3-Real-ESRGAN)。首先,在鑒別器中引入U(xiǎn)Net3+結(jié)構(gòu),從全尺度捕捉細(xì)粒度的細(xì)節(jié)和粗粒度的語(yǔ)義。其次,采用雙鑒別器結(jié)構(gòu),一個(gè)鑒別器學(xué)習(xí)圖像紋理細(xì)節(jié),另一個(gè)鑒別器關(guān)注圖像邊緣,實(shí)現(xiàn)圖像信息互補(bǔ)。在Set5, Set14, BSD100和Urban100數(shù)據(jù)集上,與多種基于生成對(duì)抗網(wǎng)絡(luò)的超分重建方法相比,除Set5數(shù)據(jù)集外,DU3-Real-ESRGAN方法在峰值信噪比(PSNR)、結(jié)構(gòu)相似性(SSIM)和無(wú)參圖像考評(píng)價(jià)指標(biāo)(NIQE)都優(yōu)于其他方法,產(chǎn)生了更直觀逼真的高分辨率圖像。
-
關(guān)鍵詞:
- 超分辨率重建 /
- 純合成數(shù)據(jù)訓(xùn)練的真實(shí)世界盲超分算法 /
- UNet3+ /
- 雙鑒別器
Abstract: Image super-resolution reconstruction methods have very important uses in public safety detection, satellite imaging, medicine and photo restoration. In this paper, super-resolution reconstruction methods based on generative adversarial networks are investigated, from the training Real-world blind Enhanced Super-Resolution Generative Adversarial Networks pure synthetic data (Real-ESRGAN) method, a double UNet3+ discriminators Real-ESRGAN (DU3-Real-ESRGAN) method is proposed. Firstly, a UNet3+ structure is introduced in the discriminator to capture fine-grained details and coarse-grained semantics from the full scale. Secondly, a dual discriminator structure is adopted, with one discriminator learning image texture details and the other focusing on image edges to achieve complementary image information. Compared with several methods based on generative adversarial networks on Set5, Set14, BSD100 and Urban100 data sets, except for Set5, the Peak Signal to Noise Ration (PSNR), Structure SIMilarity (SSIM) and Natural Image Quality Evaluator (NIQE) values of the DU3-Real-ESRGAN method are superior to those of other methods to produce more intuitive and realistic high-resolution images. -
表 1 PSNR/SSIM值對(duì)比
數(shù)據(jù)集 算法 SRGAN EDSR ESRGAN Real-ESRGAN U3-RealESRGAN DU3-Real-ESRGAN Set5 28.99/0.791 28.80/0.787 28.81/0.7868 30.52/0.878 30.01/0.868 30.24/0.870 Set14 27.03/0.815 26.64/0.803 27.13/0.741 28.71/0.830 28.55/0.845 29.57/0.847 BSD100 27.85/0.745 28.34/0.827 27.33/0.808 29.14/0.855 29.25/0.851 30.19/0.859 Urban100 27.45/0.825 27.71/0.7420 27.29/0.836 28.82/0.850 29.15/0.795 30.05/0.857 下載: 導(dǎo)出CSV
表 2 NIQE值對(duì)比
數(shù)據(jù)集 算法 SRGAN EDSR ESRGAN Real-ESRGAN U3-RealESRGN DU3-Real-ESRGAN Set5 5.671 2 5.137 2 4.580 6 3.506 4 3.602 1 3.840 0 Set14 7.559 3 5.158 8 4.409 6 3.541 3 3.533 2 3.516 8 BSD100 7.341 3 6.271 5 3.817 2 3.691 6 3.267 5 3.247 4 Urban100 7.108 9 6.563 2 4.199 6 3.929 0 3.454 3 3.399 3 下載: 導(dǎo)出CSV
-
[1] 陶狀, 廖曉東, 沈江紅. 雙路徑反饋網(wǎng)絡(luò)的圖像超分辨重建算法[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用, 2020, 29(4): 181–186. doi: 10.15888/j.cnki.csa.007344TAO Zhuang, LIAO Xiaodong, and SHEN Jianghong. Dual stream feedback network for image super-resolution reconstruction[J]. Computer Systems &Applications, 2020, 29(4): 181–186. doi: 10.15888/j.cnki.csa.007344 [2] 陳棟. 單幅圖像超分辨率重建算法研究[D]. [碩士論文], 華南理工大學(xué), 2020.CHEN Dong. Research on single image super-resolution reconstruction algorithm[D]. [Master dissertation], South China University of Technology, 2020. [3] KAPPELER A, YOO S, DAI Qiqin, et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 2(2): 109–122. doi: 10.1109/TCI.2016.2532323 [4] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025. [5] IRANI M and PELEG S. Super resolution from image sequences[C]. [1990] Proceedings. 10th International Conference on Pattern Recognition, Atlantic City, USA, 1990: 115–120. [6] STARK H and OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715–1726. doi: 10.1364/JOSAA.6.001715 [7] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199. [8] DONG Chao, LOY C C, and TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 391–407. [9] PARK S J, SON H, CHO S, et al. SRFeat: Single image super-resolution with feature discrimination[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 455–471. [10] ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 294–310. [11] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. [12] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, USA, 2017: 1132–1140. [13] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. European Conference on Computer Vision, Munich, Germany, 2018: 63–79. [14] SOH J W, PARK G Y, JO J, et al. Natural and realistic single image super-resolution with explicit natural manifold discrimination[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8114-8123. [15] WANG Xintao, XIE Liangbin, DONG Chao, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1905–1914. [16] SAJJADI M S M, SCHÖLKOPF B, and HIRSCH M. EnhanceNet: Single image super-resolution through automated texture synthesis[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4501–4510. [17] ZHANG Kai, LI Yawei, ZUO Wangmeng, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360–6376. doi: 10.1109/TPAMI.2021.3088914 [18] HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1055–1059. [19] ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: A nested U-Net architecture for medical image segmentation[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3–11. [20] MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a “Completely Blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726 -